Skip to main content
Log in

Classification of Steiner quadruple systems of order 16 and rank at most 131

  • Coding Theory
  • Published:
Problems of Information Transmission Aims and scope Submit manuscript

Abstract

A Steiner quadruple system SQS(v) of order v is a 3-design T (v, 4, 3, λ) with λ = 1. In this paper we describe all nonisomorphic systems SQS(16) that can be obtained by the generalized concatenated construction (GC-construction). These Steiner systems have rank at most 13 over \( \mathbb{F} \)2. In particular, there is one system SQS(16) of rank 11 (points and planes of the a fine geometry AG(4, 2)), fifteen systems of rank 12, and 4131 systems of rank 13. All these Steiner systems are resolvable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Woolhouse, W.S.B., Prize Question 1733, Lady’s and Gentleman’s Diary, 1844.

  2. Kirkman, T.P., On a Problem in Combinations, Cambridge Dublin Math. J., 1847, vol. 2, pp. 191–204.

    Google Scholar 

  3. Steiner, J., Combinatorische Aufgabe, J. Reine Angew. Math., 1853, vol. 45, pp. 181–182.

    Google Scholar 

  4. Barrau, J.A., On the Combinatory Problem of Steiner, K. Akad. Wet. Amsterdam Proc. Sect. Sci., 1908, vol. 11, pp. 352–360.

    Google Scholar 

  5. Hanani, H., On Quadruple Systems, Canad. J. Math., 1960, vol. 12, pp. 145–157.

    Google Scholar 

  6. Mendelsohn, N.S. and Hung, S.H.Y., On the Steiner Systems S(3, 4, 14) and S(4, 5, 15), Util. Math., 1972, vol. 1, pp. 5–95.

    Google Scholar 

  7. Doyen, J. and Vandensavel, M., Nonisomorphic Steiner Quadruple Systems, Bull. Soc. Math. Belg., 1971, vol. 23, pp. 393–410.

    Google Scholar 

  8. Gibbons, P.B., Mathon, R., and Corneil, D.G., Steiner Quadruple Systems on 16 Symbols, Proc. 6th Southeastern Conf. on Combinatorics, Graph Theory, and Computing, Boca Raton, 1975, Hoffman, F., Mullin, R.C., Levow, R.B., Roselle, D., Stanton, R.G., and Thomas, R.S.D., Eds., Congr. Numer., vol. XIV, Winnipeg: Utilitas Math., 1975, pp. 345–365.

    Google Scholar 

  9. Lindner, C.C. and Rosa, A., There Are at Least 31 021 Nonisomorphic Steiner Quadruple Systems of Order 16, Util. Math., 1976, vol. 10, pp. 61–64.

    Google Scholar 

  10. Lindner, C.C. and Rosa, A., Steiner Quadruple Systems—A Survey, Discrete Math., 1978, vol. 22, no. 2, pp. 147–181.

    Google Scholar 

  11. Hartman, A. and Phelps, K.T., Steiner Quadruple Systems, Contemporary Design Theory: A Collection of Surveys, Dinitz, J.H. and Stinson, D.R., Eds., New York: Wiley, 1992, Ch. 6, pp. 205–240.

    Google Scholar 

  12. Colbourn, C.J. and Dinitz, J.H., Eds., The CRC Handbook of Combinatorial Designs, Boca Raton: CRC Press, 1996.

    Google Scholar 

  13. Zinoviev, V.A. and Zinoviev, D.V., Classification of Steiner Quadruple Systems of Order 16 and Rank at Most 13, in Proc. 9th Int. Workshop on Algebraic and Combinatorial Coding Theory, Kranevo, Bulgaria, 2004, pp. 399–403.

  14. Zinoviev, V.A. and Zinoviev, D.V., Binary Extended Perfect Codes of Length 16 by the Generalized Concatenated Construction, Probl. Peredachi Inf., 2002, vol. 38, no. 4, pp. 56–84 [Probl. Inf. Trans. (Engl. Transl.), 2002, vol. 38, no. 4, pp. 296–322].

    Google Scholar 

  15. Semakov N.V., Zinoviev V.A., Constant-Weight Codes and Tactical Configurations, Probl. Peredachi Inf., 1969, vol. 5, no. 3, pp. 29–38 [Probl. Inf. Trans. (Engl. Transl.), 1969, vol. 5, no. 3, pp. 22–28].

    Google Scholar 

  16. Zinoviev, V.A. and Lobstein, A.C., On Generalized Concatenated Constructions of Perfect Binary Nonlinear Codes, Probl. Peredachi Inf., 2000, vol. 36, no. 4, pp. 37–59 [Probl. Inf. Trans. (Engl. Transl.), 2000, vol. 36, no. 4, pp. 336–348].

    Google Scholar 

  17. Doyen, J., Hubaut, X., and Vandensavel, M., Ranks of Incidence Matrices of Steiner Triple Systems, Math. Z., 1978, vol. 163, pp. 251–259.

    Google Scholar 

  18. MacWilliams, F.J. and Sloane, N.J.A., The Theory of Error-Correcting Codes, Amsterdam: North-Holland, 1977. Translated under the title Teoriya kodov, ispravlyayushchikh oshibki, Moscow: Svyaz’, 1979.

    Google Scholar 

  19. Cole, F.N., Cummings, L.D., and White, H.S., The Complete Enumeration of Trial Systems in 15 Elements, Proc. Nat. Acad. Sci. USA, 1917, vol. 3, pp. 197–199.

    Google Scholar 

  20. de Vries, H.L., Some Steiner Quadruple Systems S(3, 4, 16) Such that All 16 Derived Triple Systems S(2, 3, 15) Are Isomorphic, Ars Combin., 1987, vol. 24A, pp. 107–129.

    Google Scholar 

  21. Zaitsev, G.V., Zinoviev, V.A., and Semakov, N.V., Interrelation of Preparata and Hamming Codes and Extension of Hamming Codes to New Double-Error-Correcting Codes, Proc. 2nd Int. Symp. on Information Theory, Tsahkadsor, Armenia, USSR, 1971, Petrov, P.N. and Csaki, F., Eds., Budapest: Akad. Kiado, 1973, pp. 257–263.

    Google Scholar 

  22. Hartman, A., private communication, April 2004.

  23. Phelps, K.T., private communication, April 2004.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Problemy Peredachi Informatsii, No. 4, 2004, pp. 48–67.

Original Russian Text Copyright © 2004 by V. Zinoviev, D. Zinoviev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zinoviev, V.A., Zinoviev, D.V. Classification of Steiner quadruple systems of order 16 and rank at most 131. Probl Inf Transm 40, 337–355 (2004). https://doi.org/10.1007/s11122-005-0003-9

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11122-005-0003-9

Keywords

Navigation