Skip to main content

Lifestyle and Psychosocial Patterns and Diabetes Incidence Among Women with and Without Obesity: a Prospective Latent Class Analysis

Abstract

We conducted latent class analyses to identify women with homogeneous combinations of lifestyle and behavioral variables and tested whether latent classes were prospectively associated with diabetes incidence for women with or without baseline obesity. A total of 64,710 postmenopausal women aged 50–79 years without prevalent diabetes at baseline (years 1993–1998) were followed until 2018 with a mean follow-up of 14.6 years (sd = 6.4). Lifestyle variables included smoking, diet quality, physical activity, and sleep quality. Psychosocial variables included social support, depression, and optimism. Multivariable Cox proportional hazards regression models tested associations between latent classes and diabetes incidence controlling for age, race/ethnicity, and education. During follow-up, 8076 (12.4%) women developed diabetes. For women without baseline obesity, five latent classes were identified. Compared with a lower risk referent, diabetes incidence was higher in classes characterized by high probability of multiple lifestyle and psychosocial risks (HR = 1.45; 95% CI 1.28, 1.64), poor diet and exercise (HR = 1.23; 95% CI 1.13, 1.33), and psychosocial risks alone (HR = 1.20; 95% CI 1.12, 1.29). For women with baseline obesity, four latent classes were identified. Compared with a lower risk referent, diabetes incidence was higher for women with obesity in classes characterized by high probability of multiple lifestyle and psychosocial risks (HR = 1.48; 95% CI 1.32, 1.66), poor diet and exercise (HR = 1.32; 95% CI 1.19, 1.47), and intermediate probabilities of multiple risks (HR = 1.17; 95% CI 1.05, 1.30). Diabetes prevention efforts that focus on diet and exercise may benefit from attention to how lifestyle behaviors interact with psychosocial variables to increase diabetes risks, and conversely, how psychological or social resources may be leveraged with lifestyle changes to reduce the risk for women with and without obesity.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Alley, D. E., & Chang, V. W. (2007). The changing relationship of obesity and disability, 1988-2004. JAMA, 298(17), 2020–2027.

    CAS  PubMed  Google Scholar 

  • Altevers, J., Lukaschek, K., Baumert, J., Kruse, J., Meisinger, C., Emeny, R. T., & Ladwig, K. H. (2016). Poor structural social support is associated with an increased risk of type 2 diabetes mellitus: Findings from the MONICA/KORA Augsburg cohort study. Diabetic Medicine, 33(1), 47–54.

    CAS  PubMed  Google Scholar 

  • Balk, E. M., Earley, A., Raman, G., Avendano, E. A., Pittas, A. G., & Remington, P. L. (2015). Combined diet and physical activity promotion programs to prevent type 2 diabetes among persons at increased risk: a systematic review for the Community Preventive Services Task Force. Annals of Internal Medicine, 163(6), 437–451. https://doi.org/10.7326/M15-0452.

  • Bell, J. A., Kivimaki, M., & Hamer, M. (2014). Metabolically healthy obesity and risk of incident type 2 diabetes: A meta-analysis of prospective cohort studies. Obesity Reviews, 15(6), 504–515.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berrigan, D., Dodd, K., Troiano, R. P., Krebs-Smith, S. M., & Barbash, R. B. (2003). Patterns of health behavior in U.S. adults. Preventive Medicine, 36(5), 615–623.

  • Bommer, C., Sagalova, V., Heesemann, E., Manne-Goehler, J., Atun, R., Barnighausen, T., et al. (2018). Global economic burden of diabetes in adults: Projections from 2015 to 2030. Diabetes Care, 41(5), 963–970.

    PubMed  Google Scholar 

  • Burnam, M. A., Wells, K. B., Leake, B., & Landsverk, J. (1988). Development of a brief screening instrument for detecting depressive disorders. Medical Care, 26(8), 775–789.

    CAS  PubMed  Google Scholar 

  • Coups, E. J., Gaba, A., & Orleans, C. T. (2004). Physician screening for multiple behavioral health risk factors. American Journal of Preventive Medicine, 27(2 Suppl), 34–41.

    PubMed  Google Scholar 

  • Davidson, R. J., Kabat-Zinn, J., Schumacher, J., Rosenkranz, M., Muller, D., Santorelli, S. F., et al. (2003). Alterations in brain and immune function produced by mindfulness meditation. Psychosomatic Medicine, 65(4), 564–570.

    PubMed  Google Scholar 

  • de Groot, M., Marrero, D., Mele, L., Doyle, T., Schwartz, F., Mather, K. J., et al. (2018). Depressive symptoms, antidepressant medication use, and inflammatory markers in the Diabetes Prevention Program. Psychosomatic Medicine, 80(2), 167–173.

    PubMed  PubMed Central  Google Scholar 

  • Degenhardt, L., Hall, W., & Lynskey, M. (2001). Alcohol, cannabis and tobacco use among Australians: A comparison of their associations with other drug use and use disorders, affective and anxiety disorders, and psychosis. Addiction, 96(11), 1603–1614.

    CAS  PubMed  Google Scholar 

  • Delahanty, L. M., Conroy, M. B., & Nathan, D. M. (2006). Psychological predictors of physical activity in the diabetes prevention program. Journal of the American Dietetic Association, 106(5), 698–705.

    PubMed  PubMed Central  Google Scholar 

  • DPP. (1999). Design and methods for a clinical trial in the prevention of type 2 diabetes. Diabetes Care, 22(4), 623–634.

    Google Scholar 

  • Emmer, C., Bosnjak, M., & Mata, J. (2020). The association between weight stigma and mental health: A meta-analysis. Obesity Reviews, 21(1):e12935.

  • Fine, L. J., Philogene, G. S., Gramling, R., Coups, E. J., & Sinha, S. (2004). Prevalence of multiple chronic disease risk factors - 2001 National Health Interview Survey. American Journal of Preventive Medicine, 27(2), 18–24.

    PubMed  Google Scholar 

  • Grant, B. F., Stinson, F. S., Dawson, D. A., Chou, S. P., Dufour, M. C., Compton, W., et al. (2004). Prevalence and co-occurrence of substance use disorders and independent mood and anxiety disorders - results from the national epidemiologic survey on alcohol and related conditions. Archives of General Psychiatry, 61(8), 807–816.

    PubMed  Google Scholar 

  • Guenther, P., Reedy, J., Krebs-Smith, S., & Reeve, B. (2008). Evaluation of the Healthy Eating Index-2005. Journal of the American Dietetic Association, 108(11), 1854–1864.

    PubMed  Google Scholar 

  • Hays, J., Hunt, J. R., Hubbell, F. A., Anderson, G. L., Limacher, M., Allen, C., & Rossouw, J. E. (2003). The Women’s Health Initiative recruitment methods and results. Annals of Epidemiology, 13(9 Suppl), S18–S77.

    PubMed  Google Scholar 

  • Heckenberg, R. A., Hale, M. W., Kent, S., & Wright, B. J. (2019). An online mindfulness-based program is effective in improving affect, over-commitment, optimism and mucosal immunity. Physiology & Behavior, 199, 20–27.

    CAS  Google Scholar 

  • Hendryx, M., Nicholson, W., Manson, J. E., Kroenke, C. H., Lee, J., Weitlauf, J. C., et al. (2019). Social relationships and risk of type 2 diabetes among postmenopausal women. The Journals of Gerontology. Series B, Psychological Sciences and Social Sciences.

  • Hilding, A., Shen, C., & Ostenson, C. G. (2015). Social network and development of prediabetes and type 2 diabetes in middle-aged Swedish women and men. Diabetes Research and Clinical Practice, 107(1), 166–177.

    PubMed  Google Scholar 

  • Hu, F. B., Manson, J. E., Stampfer, M. J., Colditz, G., Liu, S., Solomon, C. G., & Willett, W. C. (2001). Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. The New England Journal of Medicine, 345(11), 790–797.

    CAS  PubMed  Google Scholar 

  • IDF. (2015). International Diabetes Federation. IDF Diabetes Atlas 7th Edition (2015). (https://idf.org/e-library/epidemiology-research/diabetes-atlas/13-diabetes-atlas-seventhedition.html). [Accessed 11–13-19].

  • IDF. (2017). International Diabetes Federation. IDF Diabetes Atlas - 8th Edition. (http://www.diabetesatlas.org/resources/2017-atlas). [Accessed 11–13-19].

  • Jackson, J. M., Defor, T. A., Crain, A. L., Kerby, T., Strayer, L., Lewis, C. E., et al. (2013). Self-reported diabetes is a valid outcome in pragmatic clinical trials and observational studies. Journal of Clinical Epidemiology, 66(3), 349–350.

    PubMed  Google Scholar 

  • Janney, C. A., Greenberg, J. M., Moin, T., Kim, H. M., Holleman, R. G., Hughes, M., et al. (2018). Does mental health influence weight loss in adults with prediabetes? Findings from the VA Diabetes Prevention Program. General Hospital Psychiatry, 53, 32–37.

    PubMed  Google Scholar 

  • Johnson-Kozlow, M., Rock, C. L., Gilpin, E. A., Hollenbach, K. A., & Pierce, J. P. (2007). Validation of the WHI brief physical activity questionnaire among women diagnosed with breast cancer. American Journal of Health Behavior, 31(2), 193–202.

    PubMed  Google Scholar 

  • Koplitz, S. N., Jacob, D. J., Sulprizio, M. P., Myllyvirta, L., & Reid, C. (2017). Burden of disease from rising coal-fired power plant emissions in Southeast Asia. Environmental Science & Technology, 51(3), 1467–1476.

    CAS  Google Scholar 

  • Langer, R. D., White, E., Lewis, C. E., Kotchen, J. M., Hendrix, S. L., & Trevisan, M. (2003). The Women’s Health Initiative Observational Study: Baseline characteristics of participants and reliability of baseline measures. Annals of Epidemiology, 13(9 Suppl), S107–S121.

    PubMed  Google Scholar 

  • Lanza, S. T., Collins, L. M., Lemmon, D. R., & Schafer, J. L. (2007). PROC LCA: A SAS procedure for latent class analysis. Structural Equation Modeling : A Multidisciplinary Journal, 14(4), 671–694.

    Google Scholar 

  • Lanza, S. T., Rhoades, B. L., Greenberg, M. T., Cox, M., et al. (2011). Modeling multiple risks during infancy to predict quality of the caregiving environment: Contributions of a person-centered approach. Infant Behavior & Development, 34(3), 390–406.

    Google Scholar 

  • Leventhal, A. M., Huh, J., & Dunton, G. F. (2014). Clustering of modifiable biobehavioral risk factors for chronic disease in US adults: a latent class analysis. Perspect Public Health, 134(6), 331–338. https://doi.org/10.1177/1757913913495780.

  • Luo, J., Manson, J. E., Weitlauf, J. C., Shadyab, A. H., Rapp, S. R., Garcia, L., et al. (2019). Personality traits and diabetes incidence among postmenopausal women. Menopause, 26(6), 629–636.

    PubMed  Google Scholar 

  • Margolis, K. L., Lihong, Q., Brzyski, R., Bonds, D. E., Howard, B. V., Kempainen, S., et al. (2008). Validity of diabetes self-reports in the Women’s Health Initiative: Comparison with medication inventories and fasting glucose measurements. Clinical Trials, 5(3), 240–247.

    PubMed  Google Scholar 

  • McCrae, R. R. (2011). Personality traits and the potential of positive psychology. In K. M. Sheldon, T. B. Kashdan, & M. F. Steger (Eds.), Designing positive psychology: Taking stock and moving forward (pp. 1–23). New York: Oxford University Press.

    Google Scholar 

  • Meyer, A. M., Evenson, K. R., Morimoto, L., Siscovick, D., & White, E. (2009). Test-retest reliability of the Women’s Health Initiative physical activity questionnaire. Medicine and Science in Sports and Exercise, 41(3), 530–538.

    PubMed  PubMed Central  Google Scholar 

  • Miller, W. R., & Rollnick, S. (1991). Motivational interviewing: Preparing people to change addictive behavior. New York: Guilford Press.

    Google Scholar 

  • NIDDK. (2018). Diabetes Prevention Prorgam (DPP). (https://www.niddk.nih.gov/about-niddk/research-areas/diabetes/diabetes-prevention-program-dpp0 [Accessed 11–13-19].

  • Norberg, M., Stenlund, H., Lindah, B., Andersson, C., Eriksson, J. W., & Weinehall, L. (2007). Work stress and low emotional support is associated with increased risk of future type 2 diabetes in women. Diabetes Res Clin Prac, 76(3), 368–377.

    CAS  Google Scholar 

  • Nylund, K. L., Asparouhov, T., & Muthen, B. O. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling, 2007(4), 535–569.

    Google Scholar 

  • Olsson, L., Ahlbom, A., Grill, V., Midthjell, K., & Carlsson, S. (2012). Sleep disturbances and low psychological well-being are associated with an increased risk of autoimmune diabetes in adults. Results from the Nord-Trondelag Health Study. Diabetes Research and Clinical Practice, 98(2), 302–311.

    PubMed  Google Scholar 

  • Pan, A., Wang, Y., Talaei, M., Hu, F. B., & Wu, T. (2015). Relation of active, passive, and quitting smoking with incident type 2 diabetes: A systematic review and meta-analysis. The Lancet Diabetes and Endocrinology, 3(12), 958–967.

    PubMed  Google Scholar 

  • Patterson, R. E., Kristal, A. R., Tinker, L. F., Carter, R. A., Bolton, M. P., & Agurs-Collins, T. (1999). Measurement characteristics of the Women’s Health Initiative food frequency questionnaire. Annals of Epidemiology, 9(3), 178–187.

    CAS  PubMed  Google Scholar 

  • Phillips, A. S., & Guarnaccia, C. A. (2020). Self-determination theory and motivational interviewing interventions for type 2 diabetes prevention and treatment: A systematic review. Journal of Health Psychology, 25(1), 44–66.

    PubMed  Google Scholar 

  • Pronk, N. P., Anderson, L. H., Crain, A. L., Martinson, B. C., O’Connor, P. J., Sherwood, N. E., & Whitebird, R. R. (2004). Meeting recommendations for multiple healthy lifestyle factors. Prevalence, clustering, and predictors among adolescent, adult, and senior health plan members. American Journal of Preventive Medicine, 27(2 Suppl), 25–33.

    PubMed  Google Scholar 

  • Reeves, M. J., & Rafferty, A. P. (2005). Healthy lifestyle characteristics among adults in the United States, 2000. Archives of Internal Medicine, 165(8), 854–857.

    PubMed  Google Scholar 

  • Rubin, R. R., Ma, Y., Marrero, D. G., Peyrot, M., Barrett-Connor, E. L., Kahn, S. E., et al. (2008). Elevated depression symptoms, antidepressant medicine use, and risk of developing diabetes during the diabetes prevention program. Diabetes Care, 31, 420–426.

    PubMed  Google Scholar 

  • Scheier, M. F., Carver, C. S., & Bridges, M. W. (1994). Distinguishing optimism from neuroticism (and trait anxiety, self-mastery, and self-esteem) - a reevaluation of the life orientation test. Journal of Personality and Social Psychology, 67(6), 1063–1078.

    CAS  PubMed  Google Scholar 

  • Sherbourne, C. D., & Stewart, A. L. (1991). The MOS social support survey. Social Science & Medicine, 32(6), 705–714.

    CAS  Google Scholar 

  • Steinbrecher, A., Morimoto, Y., Heak, S., Ollberding, N. J., Geller, K. S., Grandinetti, A., et al. (2011). The preventable proportion of type 2 diabetes by ethnicity: The multiethnic cohort. Annals of Epidemiology, 21(7), 526–535.

    PubMed  PubMed Central  Google Scholar 

  • WHI. (1998). Design of the Women’s Health Initiative clinical trial and observational study. Controlled Clinical Trials, 19(1), 61–109.

    Google Scholar 

  • Zelman, K. M. (2018). 4 steps to a health lifestyle. WebMD (https://www.webmd.com/diet/features/4-steps-healthy-lifestyle#1) [Accessed 11–13-19].

  • Zheng, Y., Ley, S. H., & Hu, F. B. (2018). Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nature Reviews. Endocrinology, 14(2), 88–98.

    PubMed  Google Scholar 

Download references

Funding

The WHI program is funded by the National Heart, Lung, and Blood Institute, National Institutes of Health, US Department of Health and Human Services through contracts HHSN268201600018C, HHSN268201600001C, HHSN268201600002C, HHSN268201600003C, and HHSN268201600004C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hendryx.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethical Approval

The research involved human participants. The study was approved by Institutional Review Boards at all 40 participating clinical centers and at the coordinating center. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee (WHI Clinical Coordinating Center, Fred Hutchinson Cancer Research Center) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hendryx, M., Dinh, P., Chow, A. et al. Lifestyle and Psychosocial Patterns and Diabetes Incidence Among Women with and Without Obesity: a Prospective Latent Class Analysis. Prev Sci 21, 850–860 (2020). https://doi.org/10.1007/s11121-020-01130-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11121-020-01130-6

Keywords

  • Latent class analysis
  • Lifestyle
  • Postmenopausal
  • Psychosocial risks
  • Type 2 diabetes