Prevention Science

, Volume 19, Issue 1, pp 101–108 | Cite as

Commentary for Special Issue of Prevention Science “Using Genetics in Prevention: Science Fiction or Science Fact?”

  • Danielle M. DickEmail author


A growing number of prevention studies have incorporated genetic information. In this commentary, I discuss likely reasons for growing interest in this line of research and reflect on the current state of the literature. I review challenges associated with the incorporation of genotypic information into prevention studies, as well as ethical considerations associated with this line of research. I discuss areas where developmental psychologists and prevention scientists can make substantive contributions to the study of genetic predispositions, as well as areas that could benefit from closer collaborations between prevention scientists and geneticists to advance this area of study. In short, this commentary tackles the complex questions associated with what we hope to achieve by adding genetic components to prevention research and where this research is likely to lead in the future.


Gene-environment interaction Prevention Genetics GxI Gene by intervention interaction 


Compliance with Ethical Standards

Conflicts of Interest

The author declares no conflicts of interest.


Dr. Danielle M. Dick is supported by grants R01 AA015416; K02 AA018755; P50 AA0022537; R37 AA011408; and U10 AA008401 from the National Institutes of Health (NIH)/National Institute on Alcohol Abuse and Alcoholism (NIAAA), as well as the BTtoP Category II Research Grant from the Bringing Theory to Practice (BTtoP) Project.

Ethical Approval

This article does not contain any studies with human participants or animals performed by the author.

Informed Consent

Because this article is a commentary, informed consent is not applicable.


  1. Albert, D., Belsky, D. W., Crowley, D. M., Latendresse, S. J., Aliev, F., Riley, B., et al. (2015). Can genetics predict response to complex behavioral interventions? Evidence from a genetic analysis of the fast track randomized control trial. Journal of Policy Analysis and Management, 34, 497–518.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bakermans-Kranenburg, M. J., & van Ijzendoorn, M. H. (2011). Differential susceptibility to rearing environment depending on dopamine-related genes: New evidence and a meta-analysis. Development and Psychopathology, 23, 39–52. doi: 10.1017/s0954579410000635.CrossRefPubMedGoogle Scholar
  3. Bakermans-Kranenburg, M. J., Van, I. M. H., Pijlman, F. T., Mesman, J., & Juffer, F. (2008). Experimental evidence for differential susceptibility: Dopamine D4 receptor polymorphism (DRD4 VNTR) moderates intervention effects on toddlers' externalizing behavior in a randomized controlled trial. Developmental Psychology, 44, 293–300. doi: 10.1037/0012-1649.44.1.293.CrossRefPubMedGoogle Scholar
  4. Bates, J. E., Pettit, G. S., Dodge, K. A., & Ridge, B. (1998). Interaction of temperamental resistance to control and restrictive parenting in the development of externalizing behavior. Developmental Psychology, 34, 982–995.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Beach, S. R. H., Lei, M. K., Brody, G. H., & Philibert, R. A. (2016). Prevention of early substance use mediates, and variation at SLC6A4 moderates, SAAF intervention effects on OXTR methylation. Prevention Science, 1–11. doi: 10.1007/s11121-016-0709-5.
  6. Belsky, J. (1997). Theory testing, effect-size evaluation, and differential susceptibility to rearing influence: The case of mothering and attachment. Child Development, 68, 598–600.CrossRefPubMedGoogle Scholar
  7. Belsky, J., Bakermans-Kranenburg, M. J., & Van IJzendoorn, M. H. (2007). For better and for worse: Differential susceptibility to environmental influences. Current Directions in Psychological Science, 16, 300–304.CrossRefGoogle Scholar
  8. Belsky, J., Jonassaint, C., Pluess, M., Stanton, M., Brummett, B., & Williams, R. (2009). Vulnerability genes or plasticity genes? Molecular Psychiatry, 14, 746–754. doi: 10.1038/mp.2009.44.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Brody, G. H., Beach, S. R., Philibert, R. A., Chen, Y. F., & Murry, V. M. (2009a). Prevention effects moderate the association of 5-HTTLPR and youth risk behavior initiation: Gene x environment hypotheses tested via a randomized prevention design. Child Development, 80, 645–661. doi: 10.1111/j.1467-8624.2009.01288.x.CrossRefPubMedGoogle Scholar
  10. Brody, G. H., Chen, Y. F., Beach, S. R., Philibert, R. A., & Kogan, S. M. (2009b). Participation in a family-centered prevention program decreases genetic risk for adolescents’ risky behaviors. Pediatrics, 124, 911–917. doi: 10.1542/peds.2008-3464.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Brody, G. H., Beach, S. R., Hill, K. G., Howe, G. W., Prado, G., & Fullerton, S. M. (2013). Using genetically informed, randomized prevention trials to test etiological hypotheses about child and adolescent drug use and psychopathology. American Journal of Public Health, 103, S19–S24. doi: 10.2105/ajph.2012.301080.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Brody, G. H., Chen, Y. F., Beach, S. R., Kogan, S. M., Yu, T., Diclemente, R. J., et al. (2014). Differential sensitivity to prevention programming: A dopaminergic polymorphism-enhanced prevention effect on protective parenting and adolescent substance use. Health Psychology, 33, 182–191. doi: 10.1037/a0031253.CrossRefPubMedGoogle Scholar
  13. Bronfenbrenner, U. (1994). Ecological models of human development. Readings on the development of children, 2, 37–43.Google Scholar
  14. Bujak, R., Struck-Lewicka, W., Markuszewski, M. J., & Kaliszan, R. (2015). Metabolomics for laboratory diagnostics. Journal of Pharmaceutical and Biomedical Analysis, 113, 108–120. doi: 10.1016/j.jpba.2014.12.017.CrossRefPubMedGoogle Scholar
  15. Burke, W., & Psaty, B. M. (2007). Personalized medicine in the era of genomics. JAMA, 298, 1682–1684. doi: 10.1001/jama.298.14.1682.CrossRefPubMedGoogle Scholar
  16. Carlson, C. S., Eberle, M. A., Rieder, M. J., Yi, Q., Kruglyak, L., & Nickerson, D. A. (2004). Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. American Journal of Human Genetics, 74, 106–120. doi: 10.1086/381000.CrossRefPubMedGoogle Scholar
  17. Caspi, A., McClay, J., Moffitt, T. E., Mill, J., Martin, J., Craig, I. W., et al. (2002). Role of genotype in the cycle of violence in maltreated children. Science, 297, 851–854. doi: 10.1126/science.1072290.CrossRefPubMedGoogle Scholar
  18. Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., et al. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science, 301, 386–389. doi: 10.1126/science.1083968.CrossRefPubMedGoogle Scholar
  19. Christenhusz, G. M., Devriendt, K., & Dierickx, K. (2013). To tell or not to tell? A systematic review of ethical reflections on incidental findings arising in genetics contexts. European Journal of Human Genetics, 21, 248–255. doi: 10.1038/ejhg.2012.130.CrossRefPubMedGoogle Scholar
  20. Cleveland, H. H., Griffin, A. M., Wolf, P. S., Wiebe, R. P., Schlomer, G. L., Feinberg, M. E., et al. (2017). Transactions between substance use intervention, the oxytocin receptor (OXTR) gene, and peer substance use predicting youth alcohol use. Prevention Science. doi: 10.1007/s11121-017-0749-5.
  21. Collins, F. S., & Varmus, H. (2015). A new initiative on precision medicine. The New England Journal of Medicine, 372, 793–795. doi: 10.1056/NEJMp1500523.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Dick, D. M., Li, T. K., Edenberg, H. J., Hesselbrock, V., Kramer, J., Kuperman, S., et al. (2004). A genome-wide screen for genes influencing conduct disorder. Molecular Psychiatry, 9, 81–86. doi: 10.1038/ Scholar
  23. Dick, D. M., Viken, R. J., Kaprio, J., Pulkkinen, L., & Rose, R. J. (2005). Understanding the covariation among childhood externalizing symptoms: Genetic and environmental influences on conduct disorder, attention deficit hyperactivity disorder, and oppositional defiant disorder symptoms. Journal of Abnormal Child Psychology, 33, 219–229. doi: 10.1007/s10802-005-1829-8.CrossRefPubMedGoogle Scholar
  24. Dick, D. M., Bierut, L., Hinrichs, A., Fox, L., Bucholz, K. K., Kramer, J., et al. (2006). The role of GABRA2 in risk for conduct disorder and alcohol and drug dependence across developmental stages. Behavior Genetics, 36, 577–590. doi: 10.1007/s10519-005-9041-8.CrossRefPubMedGoogle Scholar
  25. Dick, D. M., Pagan, J. L., Viken, R., Purcell, S., Kaprio, J., Pulkkinen, L., & Rose, R. J. (2007). Changing environmental influences on substance use across development. Twin Research and Human Genetics, 10, 315–326. doi: 10.1375/twin.10.2.315.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Dick, D. M., Aliev, F., Wang, J. C., Saccone, S., Hinrichs, A., Bertelsen, S., et al. (2008). A systematic single nucleotide polymorphism screen to fine-map alcohol dependence genes on chromosome 7 identifies association with a novel susceptibility gene ACN9. Biological Psychiatry, 63, 1047–1053. doi: 10.1016/j.biopsych.2007.11.005.CrossRefPubMedGoogle Scholar
  27. Dick, D. M., Riley, B., & Latendresse, S. (2011). Incorporating genetics into your studies: A guide for social scientists. Frontiers in Psychiatry, 2(17). doi: 10.3389/fpsyt.2011.00017.
  28. Dick, D. M., Barr, P., Cho, S.B., Cooke, M., Kuo, S., Lewis, T., Neale, Z., Salvatore, J., Savage, J., Su, J. (2017). Post-GWAS in psychiatric genetics: A developmental perspective on the “other” next steps. Under review.Google Scholar
  29. Dishion, T. J., Brennan, L. M., Shaw, D. S., McEachern, A. D., Wilson, M. N., & Jo, B. (2014). Prevention of problem behavior through annual family check-ups in early childhood: Intervention effects from home to early elementary school. Journal of Abnormal Child Psychology, 42, 343–354. doi: 10.1007/s10802-013-9768-2.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Farrell, M. S., Werge, T., Sklar, P., Owen, M. J., Ophoff, R. A., O’Donovan, M. C., et al. (2015). Evaluating historical candidate genes for schizophrenia. Molecular Psychiatry, 20, 555–562. doi: 10.1038/mp.2015.16.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Feero, W. G., & Guttmacher, A. E. (2014). Genomics, personalized medicine, and pediatrics. Academic Pediatrics, 14, 14–22. doi: 10.1016/j.acap.2013.06.008.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Friedman, N., & Rando, O. J. (2015). Epigenomics and the structure of the living genome. Genome Research, 25, 1482–1490. doi: 10.1101/gr.190165.115.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Glenn, A. L., Lochman, J. E., Dishion, T., Powell, N. P., Boxmeyer, C., & Qu, L. (2017). Oxytocin receptor gene variant interacts with intervention delivery format in predicting intervention outcomes for youth with conduct problems. Prevention Science. doi: 10.1007/s11121-017-0777-1.
  34. Green, R. C., Berg, J. S., Grody, W. W., Kalia, S. S., Korf, B. R., Martin, C. L., et al. (2013). ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genetics in Medicine, 15, 565–574. doi: 10.1038/gim.2013.73.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Guo, G., Wilhelmsen, K., & Hamilton, N. (2007). Gene–lifecourse interaction for alcohol consumption in adolescence and young adulthood: Five monoamine genes. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 144, 417–423.CrossRefGoogle Scholar
  36. Guttmacher, A. E., & Collins, F. S. (2003). Welcome to the genomic era. The New England Journal of Medicine, 349, 996–998. doi: 10.1056/NEJMe038132.CrossRefPubMedGoogle Scholar
  37. Guttmacher, A. E., Porteous, M. E., & McInerney, J. D. (2007). Educating health-care professionals about genetics and genomics. Nature Reviews. Genetics, 8, 151–157. doi: 10.1038/nrg2007.CrossRefPubMedGoogle Scholar
  38. Hendrickson, B. C., Donohoe, C., Akmaev, V. R., Sugarman, E. A., Labrousse, P., Boguslavskiy, L., et al. (2009). Differences in SMN1 allele frequencies among ethnic groups within North America. Journal of Medical Genetics, 46, 641–644. doi: 10.1136/jmg.2009.066969.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Hettema, J. M., Neale, M. C., & Kendler, K. S. (2001). A review and meta-analysis of the genetic epidemiology of anxiety disorders. The American Journal of Psychiatry, 158, 1568–1578. doi: 10.1176/appi.ajp.158.10.1568.CrossRefPubMedGoogle Scholar
  40. Humphery-Smith, I. (2015). The 20th anniversary of proteomics and some of its origins. Proteomics, 15, 1773–1776. doi: 10.1002/pmic.201400582.CrossRefPubMedGoogle Scholar
  41. Irons, D. E., Iacono, W. G., Oetting, W. S., & McGue, M. (2012). Developmental trajectory and environmental moderation of the effect of ALDH2 polymorphism on alcohol use. Alcoholism, Clinical and Experimental Research, 36, 1882–1891. doi: 10.1111/j.1530-0277.2012.01809.x.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Kessler, R. C., Crum, R. M., Warner, L. A., Nelson, C. B., Schulenberg, J., & Anthony, J. C. (1997). Lifetime co-occurrence of DSM-III-R alcohol abuse and dependence with other psychiatric disorders in the National Comorbidity Survey. Archives of General Psychiatry, 54, 313–321.CrossRefPubMedGoogle Scholar
  43. Latendresse, S. J., Musci, R., & Maher, B. S. (2017). Critical issues in the inclusion of genetic and epigenetic information in prevention and intervention trials. Prevention Science. doi: 10.1007/s11121-017-0785-1.
  44. Leve, L. D., Neiderhiser, J. M., Harold, G. T., Natsuaki, M. N., Bohannan, B. J., & Cresko, W. A. (2017). Naturalistic experimental designs as tools for understanding the role of genes and the environment in prevention research. Prevention Science. doi: 10.1007/s11121-017-0746-8.
  45. Li, J. J., Cho, S. B., Salvatore, J. E., Edenberg, H. J., Agrawal, A., Chorlian, D. B., et al. (2017). The impact of peer substance use and polygenic risk on trajectories of heavy episodic drinking across adolescence and emerging adulthood. Alcoholism, Clinical and Experimental Research, 41, 65–75. doi: 10.1111/acer.13282.CrossRefPubMedGoogle Scholar
  46. Maher, B. S., Latendresse, S., & Vanyukov, M. M. (2016). Informing prevention and intervention policy using genetic studies of resistance. Prevention Science, 1–9. doi: 10.1007/s11121-016-0730-8.
  47. McCarthy, S., Das, S., Kretzschmar, W., Delaneau, O., Wood, A. R., Teumer, A., et al., the Haplotype Reference. (2016). A reference panel of 64,976 haplotypes for genotype imputation. Nature Genetics, 48, 1279–1283. doi: 10.1038/ng.3643.
  48. McDonald, D., Birmingham, A., & Knight, R. (2015). Context and the human microbiome. Microbiome, 3, 52. doi: 10.1186/s40168-015-0117-2.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Musci, R. J., Fairman, B., Masyn, K. E., Uhl, G., Maher, B., Sisto, D. Y., et al. (2016). Polygenic score × intervention moderation: An application of discrete-time survival analysis to model the timing of first marijuana use among urban youth. Prevention Science, 1–9. doi: 10.1007/s11121-016-0729-1.
  50. O’Donovan, M. C. (2015). What have we learned from the Psychiatric Genomics Consortium. World Psychiatry, 14, 291–293. doi: 10.1002/wps.20270.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Okbay, A., Beauchamp, J. P., Fontana, M. A., Lee, J. J., Pers, T. H., Rietveld, C. A., et al. (2016). Genome-wide association study identifies 74 loci associated with educational attainment. Nature, 533, 539–542. doi: 10.1038/nature17671.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Pappa, I., St Pourcain, B., Benke, K., Cavadino, A., Hakulinen, C., Nivard, M. G., et al. (2016). A genome-wide approach to children’s aggressive behavior: The EAGLE consortium. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 171, 562–572.CrossRefGoogle Scholar
  53. Ripke, S., Wray, N. R., Lewis, C. M., Hamilton, S. P., Weissman, M. M., Breen, G., et al. (2013). A mega-analysis of genome-wide association studies for major depressive disorder. Molecular Psychiatry, 18, 497–511. doi: 10.1038/mp.2012.21.CrossRefPubMedGoogle Scholar
  54. Russell, M. A., Schlomer, G. L., Cleveland, H. H., Feinberg, M. E., Greenberg, M. T., Spoth, R. L., et al. (2017). PROSPER intervention effects on adolescents' alcohol misuse vary by GABRA2 genotype and age. Prevention Science. doi: 10.1007/s11121-017-0751-y.
  55. Salvatore, J. E., Aliev, F., Edwards, A. C., Evans, D. M., Macleod, J., Hickman, M., et al. (2014). Polygenic scores predict alcohol problems in an independent sample and show moderation by the environment. Genes (Basel), 5, 330–346. doi: 10.3390/genes5020330.CrossRefGoogle Scholar
  56. Salvatore, J. E., Aliev, F., Bucholz, K., Agrawal, A., Hesselbrock, V., Hesselbrock, M., et al. (2015). Polygenic risk for externalizing disorders: Gene-by-development and gene-by-environment effects in adolescents and young adults. Clinical Psychological Science: A Journal of the Association for Psychological Science, 3, 189–201. doi: 10.1177/2167702614534211.CrossRefGoogle Scholar
  57. Schizophrenia Working Group of the Psychiatric Genomics Consortium. (2014). Biological insights from 108 schizophrenia-associated genetic loci. Nature, 511, 421–427. doi: 10.1038/nature13595.CrossRefPubMedCentralGoogle Scholar
  58. Schlaepfer, I. R., Hoft, N. R., Collins, A. C., Corley, R. P., Hewitt, J. K., Hopfer, C. J., et al. (2008). The CHRNA5/A3/B4 gene cluster variability as an important determinant of early alcohol and tobacco initiation in young adults. Biological Psychiatry, 63, 1039–1046. doi: 10.1016/j.biopsych.2007.10.024.CrossRefPubMedGoogle Scholar
  59. The Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium. (2011). Genome-wide association study identifies five new schizophrenia loci. Nature Genetics., 43, 969–976. doi: 10.1038/ng.940.CrossRefGoogle Scholar
  60. Turley, P., Walters, R. K., Maghzian, O., Okbay, A., Lee, J. J., Fontana, M. A., . . . Benjamin, D. J. (2017). MTAG: Multi-trait analysis of GWAS. bioRxiv.Google Scholar
  61. Walsh, C. G., Ribeiro, J. D., & Franklin, J. C. (2017). Predicting risk of suicide attempts over time through machine learning. Clinical Psychological Science, 5, 457–469.CrossRefGoogle Scholar
  62. Webb, B. T., Edwards, A. C., Wolen, A. R., Salvatore, J. E., Aliev, F., Riley, B. P., et al. (2017). Molecular genetic influences on normative and problematic alcohol use in a population-based sample of college students. Frontiers in Genetics, 8. doi: 10.3389/fgene.2017.00030.
  63. Wolf, S. M., Lawrenz, F. P., Nelson, C. A., Kahn, J. P., Cho, M. K., Clayton, E. W., et al. (2008). Managing incidental findings in human subjects research: Analysis and recommendations. The Journal of Law, Medicine & Ethics, 36, 219–248, 211. doi: 10.1111/j.1748-720X.2008.00266.x.CrossRefGoogle Scholar
  64. Wood, A. R., Esko, T., Yang, J., Vedantam, S., Pers, T. H., Gustafsson, S., et al. (2014). Defining the role of common variation in the genomic and biological architecture of adult human height. Nature Genetics, 46, 1173–1186. doi: 10.1038/ng.3097.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Zheng, Y., Albert, D., McMahon, R. J., Dodge, K., & Dick, D. (2016). Glucocorticoid receptor (NR3C1) gene polymorphism moderate intervention effects on the developmental trajectory of African-American adolescent alcohol abuse. Prevention Science, 1–11. doi: 10.1007/s11121-016-0726-4.

Copyright information

© Society for Prevention Research 2017

Authors and Affiliations

  1. 1.Departments of Psychology and Human & Molecular Genetics, College Behavioral and Emotional Health InstituteVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations