Skip to main content

Testing the Amotivational Syndrome: Marijuana Use Longitudinally Predicts Lower Self-Efficacy Even After Controlling for Demographics, Personality, and Alcohol and Cigarette Use

Abstract

The marijuana amotivational syndrome posits that cannabis use fosters apathy through the depletion of motivation-based constructs such as self-efficacy. The current study pursued a two-round design to rule out concomitant risk factors responsible for the connection from marijuana intake to lower general self-efficacy. College students (N = 505) completed measures of marijuana use, demographics (age, gender, and race), personality (extraversion, agreeableness, conscientiousness, openness, and neuroticism), other substance use (alcohol and tobacco), and general self-efficacy (initiative, effort, and persistence) in two assessments separated by a month. Hierarchical regression models found that marijuana use forecasted lower initiative and persistence, even after statistically ruling out 13 pertinent baseline covariates including demographics, personality traits, alcohol use, tobacco use, and self-efficacy subscales. A cross-lagged panel model involving initiative, effort, persistence, alcohol use, cigarette use, and marijuana use sought to unravel the temporal precedence of processes. Results showed that only marijuana (but not alcohol or tobacco) intake significantly and longitudinally prompted lower initiative and persistence. Furthermore, in the same model, the opposite temporal direction of events from lower general self-efficacy subscales to marijuana use was untenable. Findings provide partial support for the marijuana amotivational syndrome, underscore marijuana as a risk factor for decreased general self-efficacy, and offer implications and insights for marijuana prevention and future research.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211.

    Article  Google Scholar 

  2. Andersson, L., Moore, C., Hensing, G., Krantz, G., & Staland-Nyman, C. (2014). General self-efficacy and its relationship to self-reported mental illness and barriers to care: A general population study. Community Mental Health Journal, 50(6), 721–728. doi:10.1007/s10597-014-9722-y.

    Article  PubMed  Google Scholar 

  3. Arria, A. M., Caldeira, K. M., Bugbee, B. A., Vincent, K. B., & O’Grady, K. E. (2015). The academic consequences of marijuana use during college. Psychology of Addictive Behaviors, 29(3), 564.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Arria, A. M., Caldeira, K. M., Bugbee, B. A., Vincent, K. B., & O’Grady, K. E. (2016). Marijuana use trajectories during college predict health outcomes nine years post-matriculation. Drug & Alcohol Dependence, 159, 158–165. doi:10.1016/j.drugalcdep.2015.12.009.

    Article  Google Scholar 

  5. Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84(2), 191–215.

    CAS  Article  PubMed  Google Scholar 

  6. Bandura, A. (1994). Self-efficacy. John Wiley & Sons.

  7. Barnwell, S. S., Earleywine, M., & Wilcox, R. (2006). Cannabis, motivation, and life satisfaction in an internet sample. Substance Abuse Treatment, Prevention, and Policy, 1, 2. doi:10.1186/1747-597X-1-2.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Blows, S., Ivers, R. Q., Connor, J., Ameratunga, S., Woodward, M., & Norton, R. (2005). Marijuana use and car crash injury. Addiction, 100(5), 605–611.

    Article  PubMed  Google Scholar 

  9. Bosscher, R. J., & Smit, J. H. (1998). Confirmatory factor analysis of the general self-efficacy scale. Behaviour Research and Therapy, 36, 330–343.

    Article  Google Scholar 

  10. Buckner, J. D., Ecker, A. H., & Cohen, A. S. (2010). Mental health problems and interest in marijuana treatment among marijuana-using college students. Addictive Behaviors, 35(9), 826–833. doi:10.1016/j.addbeh.2010.04.001.

    Article  PubMed  Google Scholar 

  11. Caldeira, K. M., O’Grady, K. E., Vincent, K. B., & Arria, A. M. (2012). Marijuana use trajectories during the post-college transition: Health outcomes in young adulthood. Drug & Alcohol Dependence, 125(3), 267–275. doi:10.1016/j.drugalcdep.2012.02.022.

    Article  Google Scholar 

  12. Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behaviorial Research, 1, 245–276.

    CAS  Article  Google Scholar 

  13. Chen, G., Gully, S. M., & Eden, D. (2001). Validation of a new general self-efficacy scale. Organizational Research Methods, 4(1), 62–83.

    CAS  Article  Google Scholar 

  14. Cherek, D. R., Lane, S. D., & Dougherty, D. M. (2002). Possible amotivational effects following marijuana smoking under laboratory conditions. Experimental and Clinical Psychopharmacology, 10(1), 26–38.

    Article  PubMed  Google Scholar 

  15. Conroy, D. A., Kurth, M. E., Brower, K. J., Strong, D. R., & Stein, M. D. (2015). Impact of marijuana use on self-rated cognition in young adult men and women. The American Journal on Addictions, 24(2), 160–165.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Costa, P. T., & McCrae, R. R. (1995). Domains and facets: Hierarchical personality assessment using the revised neo personality inventory. Journal of Personality Assessment, 64, 21–50.

    Article  PubMed  Google Scholar 

  17. Crano, W. D., & Lac, A. (2012). The evolution of research methodologies in social psychology: A historical analysis. In A. W. Kruglanski & W. Stroebe (Eds.), Handbook of the history of social psychology (pp. 159–174). New York: Psychology Press.

    Google Scholar 

  18. Crano, W. D., Brewer, M. B., & Lac, A. (2015). Principles and methods of social research (3rd ed.). New York: Routledge.

    Google Scholar 

  19. Duncan, D. F. (1987). Lifetime prevalence of “amotivational syndrome” among users and non-users of hashish. Psychology of Addictive Behaviors, 1(2), 114–119.

    Article  Google Scholar 

  20. Fleming, C. B., White, H. R., Haggerty, K. P., Abbott, R. D., & Catalano, R. F. (2012). Educational paths and substance use from adolescence into early adulthood. Journal of Drug Issues, 42(2), 104–126.

    Article  Google Scholar 

  21. Fridberg, D. J., Vollmer, J. M., O'Donnell, B. F., & Skosnik, P. D. (2011). Cannabis users differ from non-users on measures of personality and schizotypy. Psychiatry Research, 186(1), 46–52.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gorsuch, R. (1983). Factor analysis. Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  23. Grevenstein, D., Bluemke, M., & Kroeninger-Jungaberle, H. (2016). Incremental validity of sense of coherence, neuroticism, extraversion, and general self-efficacy: Longitudinal prediction of substance use frequency and mental health. Health & Quality of Life Outcomes, 14, 9. doi:10.1186/s12955-016-0412-z.

    Article  Google Scholar 

  24. Hasin, D. S., Saha, T. D., Kerridge, B. T., Goldstein, R. B., Chou, S. P., Zhang, H., et al. (2015). Prevalence of marijuana use disorders in the United States between 2001-2002 and 2012-2013. JAMA Psychiatry, 72(12), 1235–1242.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jessor, R. (1976). Predicting time of onset of marijuana use: A developmental study of high school youth. Journal of Consulting and Clinical Psychology, 44(1), 125–134.

    CAS  Article  PubMed  Google Scholar 

  26. Jessor, R., Jessor, S. L., & Finney, J. (1973). A social psychology of marijuana use: Longitudinal studies of high school and college youth. Journal of Personality and Social Psychology, 26(1), 1–15.

    CAS  Article  PubMed  Google Scholar 

  27. John, O. P. (1990). The ‘big five’ factor taxonomy: Dimensions of personality in the natural language and in questionnaires. In L. A. Pervin (Ed.), Handbook of personality: Theory and research (pp. 66–100). New York, NY, US: Guilford Press.

    Google Scholar 

  28. John, O. P., & Srivastava, S. (1999). The big five trait taxonomy: History, measurement, and theoretical perspectives. In L. A. Pervin & O. P. John (Eds.), Handbook of personality: Theory and research (2nd ed., pp. 102–138). New York, NY, US: Guilford Press.

    Google Scholar 

  29. Johnston, L. D., O’Malley, P. M., Bachman, J. G., Schulenberg, J. E. & Miech, R. A. (2015). Monitoring the Future national survey results on drug use, 1975–2014: Volume 2, College students and adults ages 19–55. Ann Arbor: Institute for Social Research, The University of Michigan.

  30. Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20, 141–151.

    Article  Google Scholar 

  31. Keith, D. R., Hart, C. L., McNeil, M. P., Silver, R., & Goodwin, R. D. (2015). Frequent marijuana use, binge drinking and mental health problems among undergraduates. American Journal on Addictions, 24(6), 499–506. doi:10.1111/ajad.12201.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kenny, D. A. (1975). Cross-lagged panel correlation—Test for spuriousness. Psychological Bulletin, 82, 887–903.

    Article  Google Scholar 

  33. Kupfer, D. J., Detre, T., Koral, J., & Fajans, P. (1973). A comment on the “amotivational syndrome” in marijuana smokers. American Journal of Psychiatry, 130(12), 1319–1322.

    CAS  Article  PubMed  Google Scholar 

  34. Kvarme, L. G., Haraldstad, K., Helseth, S., Sørum, R., & Natvig, G. K. (2009). Associations between general self-efficacy and health-related quality of life among 12-13-year-old school children: A cross-sectional survey. Health and Quality of Life Outcomes, 7, 85. doi:10.1186/1477-7525-7-85.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lac, A. (2016). Longitudinal designs. In R. J. R. Levesque (Ed.), Encyclopedia of adolescence (pp. 1–6). Switzerland: Springer International.

    Google Scholar 

  36. Lac, A., & Crano, W. D. (2016). Marijuana use. In R. J. R. Levesque (Ed.), Encyclopedia of adolescence (2nd ed., pp. 1–8). Switzerland: Springer International.

    Google Scholar 

  37. Lane, S. D., Cherek, D. R., Pietras, C. J., & Steinberg, J. L. (2005). Performance of heavy marijuana-smoking adolescents on a laboratory measure of motivation. Addictive Behaviors, 30(4), 815–828.

    Article  PubMed  Google Scholar 

  38. Locascio, J. J. (1982). The cross-lagged correlation technique: Reconsideration in terms of exploaratory utilility, assumption specification and robustness. Educational and Psychological Measurement, 42, 1023–1036.

    Article  Google Scholar 

  39. Luszczynska, A., Gutiérez-Doña, B., & Schwarzer, R. (2005). General self-efficacy in various domains of human functioning: Evidence from five countries. International Journal of Psychology, 40(2), 80–89. doi:10.1080/00207590444000041.

    Article  Google Scholar 

  40. Lynskey, M., & Hall, W. (2000). The effects of adolescent cannabis use on educational attainment: A review. Addiction, 95(11), 1621–1630.

    CAS  Article  PubMed  Google Scholar 

  41. McCaffrey, D. F., Liccardo Pacula, R., Han, B., & Ellickson, P. (2010). Marijuana use and high school dropout: The influence of unobservables. Health Economics, 19(11), 1281–1299.

    Article  PubMed  PubMed Central  Google Scholar 

  42. McGlothlin, W. H., & West, L. J. (1968). The marihuana problem: An overview. American Journal of Psychiatry, 125(3), 370–378.

    Article  Google Scholar 

  43. Mellinger, G. D., Somers, R. H., Davidson, S. T., & Manheimer, D. I. (1976). The amotivational syndrome and the college student. Annals of the New York Academy of Sciences, 282(1), 37–55.

    CAS  Article  PubMed  Google Scholar 

  44. Merrill, R. M. (2015). Use of marijuana and changing risk perceptions. American Journal of Health Behavior, 39(3), 308–317.

    Article  PubMed  Google Scholar 

  45. Miller, W. R., & Rollnick, S. (2012). Motivational interviewing: Helping people change. Guilford press.

  46. Muthén, L., & Muthén, B. (2010). Mplus user’s guide (6th ed.). Los Angeles, CA: Muthén & Muthén.

    Google Scholar 

  47. Natvig, G. K., Albrektsen, G., & Qvarnstrøm, U. (2003). Associations between psychosocial factors and happiness among school adolescents. International Journal of Nursing Practice, 9(3), 166–175. doi:10.1046/j.1440-172X.2003.00419.x.

    Article  PubMed  Google Scholar 

  48. Pacek, L. R., Mauro, P. M., & Martins, S. S. (2015). Perceived risk of regular cannabis use in the United States from 2002 to 2012: Differences by sex, age, and race/ethnicity. Drug and Alcohol Dependence, 149, 232–244.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Phillips, K. T., Phillips, M. M., Lalonde, T. L., & Tormohlen, K. N. (2015). Marijuana use, craving, and academic motivation and performance among college students: An in-the-moment study. Addictive Behaviors, 47, 42–47. doi:10.1016/j.addbeh.2015.03.020.

    Article  PubMed  Google Scholar 

  50. Rosenstock, I. M., Strecher, V. J., & Becker, M. H. (1988). Social learning theory and the health belief model. Health Education & Behavior, 15(2), 175–183.

    CAS  Google Scholar 

  51. Shadish, W. R., Cook, T. D., & Campbel, D. T. (2002). Experimental and quasi-experiemtal designs for generalized causal inference. Boston, MA: Houghton, Mifflin and Company.

    Google Scholar 

  52. Sherer, M., Maddux, J. E., Mercandante, B., Prentice-Dunn, S., Jacobs, B., & Rogers, R. W. (1982). The self-efficacy scale: Construction and validation. Psychological Reports, 51, 663–671.

    Article  Google Scholar 

  53. Smith, D. E. (1968). Acute and chronic toxicity of marijuana. Journal of Psychoactive Drugs, 2(1), 37–48.

    Article  Google Scholar 

  54. Suerken, C. K., Reboussin, B. A., Sutfin, E. L., Wagoner, K. G., Spangler, J., & Wolfson, M. (2014). Prevalence of marijuana use at college entry and risk factors for initiation during freshman year. Addictive Behaviors, 39(1), 302–307. doi:10.1016/j.addbeh.2013.10.018.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Suerken, C. K., Reboussin, B. A., Egan, K. L., Sutfin, E. L., Wagoner, K. G., Spangler, J., & Wolfson, M. (2016). Marijuana use trajectories and academic outcomes among college students. Drug and Alcohol Dependence, 162, 137–145.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Swain, N. R., Gibb, S. J., Horwood, L., & Fergusson, D. M. (2012). Alcohol and cannabis abuse/dependence symptoms and life satisfaction in young adulthood. Drug and Alcohol Review, 31(3), 327–333.

    Article  PubMed  Google Scholar 

  57. Tabachnick, B. G., & Fidell, L. S. (2012). Using multivariate statistics. Upper Saddle River, N.J: Pearson Education.

    Google Scholar 

  58. Terracciano, A., Löckenhoff, C. E., Crum, R. M., Bienvenu, O. J., & Costa, P. T. (2008). Five-factor model personality profiles of drug users. BMC Psychiatry, 8(1), 22.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Volkow, N. D., Baler, R. D., Compton, W. M., & Weiss, S. B. (2014). Adverse health effects of marijuana use. New England Journal of Medicine, 370(23), 2219–2227. doi:10.1056/NEJMral402309.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Volkow, N. D., Swanson, J. M., Evins, A. E., DeLisi, L. E., Meier, M. H., Gonzalez, R., et al. (2016). Effects of cannabis use on human behavior, including cognition, motivation, and psychosis: A review. JAMA Psychiatry, 73(3), 292–297.

    Article  PubMed  Google Scholar 

  61. Walker, D., Stephens, R., Rowland, J., & Roffman, R. (2011). The influence of client behavior during motivational interviewing on marijuana treatment outcome. Addictive Behaviors, 36(6), 669–673.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Warner, R. M. (2013). Applied statistics: From bivariate through multivariate techniques (2nd ed.). Thousand Oaks, CA, US: Sage Publications, Inc..

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andrew Lac.

Ethics declarations

Funding

Manuscript preparation by the 1st author was supported by the NIH/NIAA Loan Repayment Program (L30 AA024314-01; PI: Lac). Manuscript preparation by the 2nd author was supported by the NIH Institutional National Research Service Award (T32 AA013525; PI: Riley) and the Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development.

Conflicts of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lac, A., Luk, J.W. Testing the Amotivational Syndrome: Marijuana Use Longitudinally Predicts Lower Self-Efficacy Even After Controlling for Demographics, Personality, and Alcohol and Cigarette Use. Prev Sci 19, 117–126 (2018). https://doi.org/10.1007/s11121-017-0811-3

Download citation

Keywords

  • Marijuana
  • Amotivational syndrome
  • General self-efficacy
  • Cross-lagged panel modeling
  • Longitudinal