Prevention Science

, Volume 19, Issue 1, pp 58–67 | Cite as

Critical Issues in the Inclusion of Genetic and Epigenetic Information in Prevention and Intervention Trials

  • Shawn J. LatendresseEmail author
  • Rashelle Musci
  • Brion S. MaherEmail author


Human genetic research in the past decade has generated a wealth of data from the genome-wide association scan era, much of which is catalogued and freely available. These data will typically test the relationship between a single nucleotide variant or polymorphism (SNP) and some outcome, disease, or trait. Ongoing investigations will yield a similar wealth of data regarding epigenetic phenomena. These data will typically test the relationship between DNA methylation at a single genomic location/region and some outcome. Most of these findings will be the result of cross-sectional investigations typically using ascertained cases and controls. Consequently, most methodological consideration focuses on methods appropriate for simple case–control comparisons. It is expected that a growing number of investigators with longitudinal experimental prevention or intervention cohorts will also measure genetic and epigenetic indicators as part of their investigations, harvesting the wealth of information generated by the genome-wide association study (GWAS) era to allow for targeted hypothesis testing in the next generation of prevention and intervention trials. Herein, we discuss appropriate quality control and statistical modelling of genetic, polygenic, and epigenetic measures in longitudinal models. We specifically discuss quality control, population stratification, genotype imputation, pathway approaches, and proper modelling of an interaction between a specific genetic variant and an environment variable (GxE interaction).


Prevention Genetic Polygenic risk Methylation GWAS 


Compliance with Ethical Standards


This work was supported by National Institute on Drug Abuse (NIDA) Grants R01DA036525 and R01DA039408 and National Institute on Alcoholism and Alcohol Abuse Grant K01AA020333.

Conflict of Interest

Drs. Latendresse, Musci, and Maher have no potential conflicts of interest to report.

Ethical Approval

For this type of study, ethical approval is not required.

Formal Consent

For this type of study, formal consent is not required.


  1. Anderson, C. A., Pettersson, F. H., Clarke, G. M., Cardon, L. R., Morris, A. P., & Zondervan, K. T. (2010). Data quality control in genetic case-control association studies. Nature Protocols, 5, 1564–1573.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aryee, M. J., Jaffe, A. E., Corrada-Bravo, H., Ladd-Acosta, C., Feinberg, A. P., Hansen, K. D., & Irizarry, R. A. (2014). Minfi: A flexible and comprehensive bioconductor package for the analysis of infinium DNA methylation microarrays. Bioinformatics (Oxford, England), 30, 1363–1369. doi: 10.1093/bioinformatics/btu049.CrossRefGoogle Scholar
  3. Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2015). The hidden efficacy of interventions: Gene×environment experiments from a differential susceptibility perspective. Annual Review of Psychology, 66, 381–409.CrossRefPubMedGoogle Scholar
  4. Bates, D., Maechler, M., Bolker, B., & Walker, S. (2014). Lme4: Linear mixed-effects models using eigen and S4. R package version, 1Google Scholar
  5. Belsky, J. (1997). Variation in susceptibility to environmental influence: An evolutionary argument. Psychological Inquiry, 8, 182–186.CrossRefGoogle Scholar
  6. Bhatia, G., Gusev, A., Loh, P., Vilhjálmsson, B. J., Ripke, S., Purcell, S.,. .. Kendler, K. S. (2015). Haplotypes of common SNPs can explain missing heritability of complex diseases. bioRxiv, 022418.Google Scholar
  7. Birnbaum, R., Jaffe, A. E., Hyde, T. M., Kleinman, J. E., & Weinberger, D. R. (2014). Prenatal expression patterns of genes associated with neuropsychiatric disorders. American Journal of Psychiatry.Google Scholar
  8. Boerwinkle, E., Chakraborty, R., & Sing, C. (1986). The use of measured genotype information in the analysis of quantitative phenotypes in man. Annals of Human Genetics, 50, 181–194.CrossRefPubMedGoogle Scholar
  9. Brody, G. H., Yu, T., Chen, E., Beach, S. R., & Miller, G. E. (2015). Family-centered prevention ameliorates the longitudinal association between risky family processes and epigenetic aging. Journal of Child Psychology and Psychiatry.Google Scholar
  10. Burton, P. R., Clayton, D. G., Cardon, L. R., Craddock, N., Deloukas, P., Duncanson, A., et al. (2007). Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature, 447, 661–678.CrossRefGoogle Scholar
  11. Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., et al. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science (New York, N.Y.), 301, 386–389. doi: 10.1126/science.1083968.CrossRefGoogle Scholar
  12. Chang, C. C., Chow, C. C., Tellier, L., Vattikuti, S., Purcell, S. M., & Lee, J. J. (2015). Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience, 4.Google Scholar
  13. Choudhry, S., Coyle, N. E., Tang, H., Salari, K., Lind, D., Clark, S. L., et al., Genetics of Asthma in Latino Americans GALA Study. (2006). Population stratification confounds genetic association studies among Latinos. Human Genetics, 118, 652–664. doi: 10.1007/s00439-005-0071-3.
  14. Clark, A. G., & Li, J. (2007). Conjuring SNPs to detect associations. Nature Genetics, 39, 815–816.CrossRefPubMedGoogle Scholar
  15. Colantuoni, C., Lipska, B. K., Ye, T., Hyde, T. M., Tao, R., Leek, J. T., et al. (2011). Temporal dynamics and genetic control of transcription in the human prefrontal cortex. Nature, 478, 519–523. doi: 10.1038/nature10524.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Delaneau, O., Zagury, J., & Marchini, J. (2013). Improved whole-chromosome phasing for disease and population genetic studies. Nature Methods, 10, 5–6.CrossRefPubMedGoogle Scholar
  17. Devlin, B., & Roeder, K. (1999). Genomic control for association studies. Biometrics, 55, 997–1004.CrossRefPubMedGoogle Scholar
  18. Dick, D. M., Agrawal, A., Keller, M. C., Adkins, A., Aliev, F., Monroe, S., et al. (2015). Candidate gene-environment interaction research: Reflections and recommendations. Perspectives on Psychological Science: A Journal of the Association for Psychological Science, 10, 37–59. doi: 10.1177/1745691614556682.CrossRefPubMedGoogle Scholar
  19. Dudbridge, F. (2013). Power and predictive accuracy of polygenic risk scores. PLoS Genetics, 9, e1003348.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Duncan, L. E., & Keller, M. C. (2011). A critical review of the first 10 years of candidate gene-by-environment interaction research in psychiatry. American Journal of Psychiatry.Google Scholar
  21. Eu-Ahsunthornwattana, J., Miller, E. N., Fakiola, M., Jeronimo, S. M., Blackwell, J. M., Cordell, H. J., & Wellcome Trust Case Control Consortium 2. (2014). Comparison of methods to account for relatedness in genome-wide association studies with family-based data. PLoS Genetics, 10, e1004445.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Farrell, M., Werge, T., Sklar, P., Owen, M., Ophoff, R., O'donovan, M., et al. (2015). Evaluating historical candidate genes for schizophrenia. Molecular Psychiatry, 20, 555–562.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Fortney, K., Dobriban, E., Garagnani, P., Pirazzini, C., Monti, D., Mari, D., et al. (2015). Genome-wide scan informed by age-related disease identifies loci for exceptional human longevity. PLoS Genetics, 11, e1005728.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Freedman, M. L., Reich, D., Penney, K. L., McDonald, G. J., Mignault, A. A., Patterson, N., et al. (2004). Assessing the impact of population stratification on genetic association studies. Nature Genetics, 36, 388–393.CrossRefPubMedGoogle Scholar
  25. Genomes Project Consortium, Durbin, R. M., Abecasis, G. R., Altshuler, D. L., Auton, A., Brooks, L. D., et al. (2010). A map of human genome variation from population-scale sequencing. Nature, 467, 1061–1073. doi: 10.1038/nature09534.CrossRefGoogle Scholar
  26. Holmans, P., Green, E. K., Pahwa, J. S., Ferreira, M. A., Purcell, S. M., Sklar, P., et al. (2009). Gene ontology analysis of GWA study data sets provides insights into the biology of bipolar disorder. American Journal of Human Genetics, 85, 13–24. doi: 10.1016/j.ajhg.2009.05.011.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hopf, F. W., & Bonci, A. (2010). Dnmt3a: Addiction's molecular forget-me-not? Nature Neuroscience, 13, 1041–1043. doi: 10.1038/nn0910-1041.CrossRefPubMedGoogle Scholar
  28. Horvath, S. (2013). DNA methylation age of human tissues and cell types. Genome Biology, 14, 3156.CrossRefGoogle Scholar
  29. Houseman, E. A., Accomando, W. P., Koestler, D. C., Christensen, B. C., Marsit, C. J., Nelson, H. H.,. .. Kelsey, K. T. (2012). DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics, 13, 86-2105-13-86. doi: 10.1186/1471-2105-13-86.
  30. Howie, B. N., Donnelly, P., & Marchini, J. (2009). A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genetics, 5, e1000529.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hutchison, K. E., Stallings, M., McGeary, J., & Bryan, A. (2004). Population stratification in the candidate gene study: Fatal threat or red herring? Psychological Bulletin, 130, 66.CrossRefPubMedGoogle Scholar
  32. Ioannidis, J. P., Ntzani, E. E., Trikalinos, T. A., & Contopoulos-Ioannidis, D. G. (2001). Replication validity of genetic association studies. Nature Genetics, 29, 306–309.CrossRefPubMedGoogle Scholar
  33. Irizarry, R. A., Hobbs, B., Collin, F., Beazer-Barclay, Y. D., Antonellis, K. J., Scherf, U., & Speed, T. P. (2003). Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics (Oxford, England), 4, 249–264. doi: 10.1093/biostatistics/4.2.249.CrossRefGoogle Scholar
  34. Jaffe, A. E., Gao, Y., Tao, R., Hyde, T. M., Weinberger, D. R., & Kleinman, J. E. (2014). The methylome of the human frontal cortex across development. bioRxiv. doi: 10.1101/005504.Google Scholar
  35. Johnson, P. O., & Neyman, J. (1936). Tests of certain linear hypotheses and their application to some educational problems. Statistical Research Memoirs.Google Scholar
  36. Keller, M. C. (2014). Gene × environment interaction studies have not properly controlled for potential confounders: The problem and the (simple) solution. Biological Psychiatry, 75, 18–24.CrossRefPubMedGoogle Scholar
  37. Kelly, T. K., De Carvalho, D. D., & Jones, P. A. (2010). Epigenetic modifications as therapeutic targets. Nature Biotechnology, 28, 1069–1078. doi: 10.1038/nbt.1678.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Langevin, S. M., Houseman, E. A., Christensen, B. C., Wiencke, J. K., Nelson, H. H., Karagas, M. R., et al. (2011). The influence of aging, environmental exposures and local sequence features on the variation of DNA methylation in blood. Epigenetics: Official Journal of the DNA Methylation Society, 6, 908–919.CrossRefGoogle Scholar
  39. Lee, P. H., O'Dushlaine, C., Thomas, B., & Purcell, S. M. (2012). INRICH: Interval-based enrichment analysis for genome-wide association studies. Bioinformatics (Oxford, England), 28, 1797–1799. doi: 10.1093/bioinformatics/bts191.CrossRefGoogle Scholar
  40. Li, Y., Willer, C. J., Ding, J., Scheet, P., & Abecasis, G. R. (2010). MaCH: Using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genetic Epidemiology, 34, 816–834.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Lin, D. Y., & Huang, B. E. (2007). The use of inferred haplotypes in downstream analyses. American Journal of Human Genetics, 80, 577–579.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Maher, B. S. (2015). Polygenic scores in epidemiology: Risk prediction, etiology, and clinical utility. Current Epidemiology Reports, 2, 239–244.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Manuck, S. B., & McCaffery, J. M. (2014). Gene-environment interaction. Annual Review of Psychology, 65, 41–70.CrossRefPubMedGoogle Scholar
  44. McGowan, P. O., Sasaki, A., D'Alessio, A. C., Dymov, S., Labonte, B., Szyf, M., et al. (2009). Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nature Neuroscience, 12, 342–348. doi: 10.1038/nn.2270.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Monroe, S. M., & Simons, A. D. (1991). Diathesis-stress theories in the context of life stress research: Implications for the depressive disorders. Psychological Bulletin, 110, 406.CrossRefPubMedGoogle Scholar
  46. Montana, G., & Pritchard, J. K. (2004). Statistical tests for admixture mapping with case-control and cases-only data. American Journal of Human Genetics, 75, 771–789.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Munafò, M. R., Durrant, C., Lewis, G., & Flint, J. (2009). Gene × environment interactions at the serotonin transporter locus. Biological Psychiatry, 65, 211–219.CrossRefPubMedGoogle Scholar
  48. Musci, R. J., Masyn, K. E., Uhl, G., Maher, B., Kellam, S. G., & Ialongo, N. S. (2015). Polygenic score × intervention moderation: An application of discrete-time survival analysis to modeling the timing of first tobacco use among urban youth. Development and Psychopathology, 27, 111–122.CrossRefPubMedGoogle Scholar
  49. Network and Pathway Analysis Subgroup of Psychiatric Genomics Consortium. (2015). Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways. Nature Neuroscience, 18, 199–209. doi: 10.1038/nn.3922.CrossRefGoogle Scholar
  50. Numata, S., Ye, T., Hyde, T. M., Guitart-Navarro, X., Tao, R., Wininger, M.,. .. Lipska, B. K. (2012). DNA methylation signatures in development and aging of the human prefrontal cortex. American Journal of Human Genetics, 90, 260–272. doi: 10.1016/j.ajhg.2011.12.020
  51. Oberlander, T. F., Weinberg, J., Papsdorf, M., Grunau, R., Misri, S., & Devlin, A. M. (2008). Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics: Official Journal of the DNA Methylation Society, 3, 97–106.CrossRefGoogle Scholar
  52. Pasaniuc, B., Sankararaman, S., Kimmel, G., & Halperin, E. (2009). Inference of locus-specific ancestry in closely related populations. Bioinformatics (Oxford, England), 25, i213–i221. doi: 10.1093/bioinformatics/btp197.CrossRefGoogle Scholar
  53. Pasaniuc, B., Zaitlen, N., Lettre, G., Chen, G. K., Tandon, A., Kao, W. H., et al. (2011). Enhanced statistical tests for GWAS in admixed populations: Assessment using African Americans from CARe and a breast cancer consortium. PLoS Genetics, 7, e1001371. doi: 10.1371/journal.pgen.1001371.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Pedroso, I., Lourdusamy, A., Rietschel, M., Nöthen, M. M., Cichon, S., McGuffin, P., et al. (2012). Common genetic variants and gene-expression changes associated with bipolar disorder are over-represented in brain signaling pathway genes. Biological Psychiatry, 72, 311–317.CrossRefPubMedGoogle Scholar
  55. Preacher, K. J., Curran, P. J., & Bauer, D. J. (2006). Computational tools for probing interactions in multiple linear regression, multilevel modeling, and latent curve analysis. Journal of Educational and Behavioral Statistics, 31, 437–448.CrossRefGoogle Scholar
  56. Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A., & Reich, D. (2006). Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics, 38, 904–909.CrossRefPubMedGoogle Scholar
  57. Pritchard, J. K., & Donnelly, P. (2001). Case-control studies of association in structured or admixed populations. Theoretical Population Biology, 60, 227–237.CrossRefPubMedGoogle Scholar
  58. Pritchard, J. K., & Rosenberg, N. A. (1999). Use of unlinked genetic markers to detect population stratification in association studies. American Journal of Human Genetics, 65, 220–228.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Purcell, S. M., Wray, N. R., Stone, J. L., Visscher, P. M., O'Donovan, M. C., Sullivan, P. F., & Sklar, P. (2009). Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature, 460, 748–752.PubMedGoogle Scholar
  60. Risch, N., Herrell, R., Lehner, T., Liang, K., Eaves, L., Hoh, J., et al. (2009). Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression: A meta-analysis. JAMA, 301, 2462–2471.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Roeder, K., Bacanu, S. A., Wasserman, L., & Devlin, B. (2006). Using linkage genome scans to improve power of association in genome scans. American Journal of Human Genetics, 78, 243–252.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Rogosa, D. (1980). Comparing nonparallel regression lines. Psychological Bulletin, 88, 307.CrossRefGoogle Scholar
  63. Roisman, G. I., Newman, D. A., Fraley, R. C., Haltigan, J. D., Groh, A. M., & Haydon, K. C. (2012). Distinguishing differential susceptibility from diathesis–stress: Recommendations for evaluating interaction effects. Development and Psychopathology, 24, 389–409.CrossRefPubMedGoogle Scholar
  64. Rossin, E. J., Lage, K., Raychaudhuri, S., Xavier, R. J., Tatar, D., Benita, Y., et al. (2011). Proteins encoded in genomic regions associated with immune-mediated disease physically interact and suggest underlying biology. PLoS Genetics, 7, e1001273. doi: 10.1371/journal.pgen.1001273.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Sankararaman, S., Sridhar, S., Kimmel, G., & Halperin, E. (2008). Estimating local ancestry in admixed populations. American Journal of Human Genetics, 82, 290–303. doi: 10.1016/j.ajhg.2007.09.022.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Segrè, A. V., Groop, L., Mootha, V. K., Daly, M. J., Altshuler, D., & Diagram Consortium, & Magic Investigators. (2010). Common inherited variation in mitochondrial genes is not enriched for associations with type 2 diabetes or related glycemic traits. PLoS Genetics, 6, e1001058.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Smith, A. K., Kilaru, V., Kocak, M., Almli, L. M., Mercer, K. B., Ressler, K. J.,. .. Conneely, K. N. (2014). Methylation quantitative trait loci (meQTLs) are consistently detected across ancestry, developmental stage, and tissue type. BMC Genomics, 15, 145–2164–15-145. doi: 10.1186/1471-2164-15-145
  68. Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., et al. (2005). Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America, 102, 15545–15550.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Tabor, H. K., Risch, N. J., & Myers, R. M. (2002). Candidate-gene approaches for studying complex genetic traits: Practical considerations. Nature Reviews Genetics, 3, 391–397.CrossRefPubMedGoogle Scholar
  70. Tingley, D., Yamamoto, T., Hirose, K., Keele, L., & Imai, K. (2014). Mediation: R package for causal mediation analysis.Google Scholar
  71. Tsankova, N., Renthal, W., Kumar, A., & Nestler, E. J. (2007). Epigenetic regulation in psychiatric disorders. Nature Reviews Neuroscience, 8, 355–367. doi: 10.1038/nrn2132.CrossRefPubMedGoogle Scholar
  72. Uddin, M., Aiello, A. E., Wildman, D. E., Koenen, K. C., Pawelec, G., de Los Santos, R., et al. (2010). Epigenetic and immune function profiles associated with posttraumatic stress disorder. Proceedings of the National Academy of Sciences of the United States of America, 107, 9470–9475. doi: 10.1073/pnas.0910794107.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Uddin, M., Koenen, K. C., Aiello, A. E., Wildman, D. E., de Los Santos, R., & Galea, S. (2011). Epigenetic and inflammatory marker profiles associated with depression in a community-based epidemiologic sample. Psychological Medicine, 41, 997–1007. doi: 10.1017/S0033291710001674.CrossRefPubMedGoogle Scholar
  74. Vandenbergh, D. J., Schlomer, G. L., Cleveland, H. H., Schink, A. E., Hair, K. L., Feinberg, M. E., et al. (2016). An adolescent substance prevention model blocks the effect of CHRNA5 genotype on smoking during high school. Nicotine & Tobacco Research: Official Journal of the Society for Research on Nicotine and Tobacco, 18, 212–220. doi: 10.1093/ntr/ntv095.CrossRefGoogle Scholar
  75. Vilhjalmsson, B., Yang, J., Finucane, H. K., Gusev, A., Lindstrom, S., Ripke, S.,. .. Do, R. (2015). Modeling linkage disequilibrium increases accuracy of polygenic risk scores. bioRxiv, 015859.Google Scholar
  76. Visscher, P. M., Medland, S. E., Ferreira, M., Morley, K. I., Zhu, G., Cornes, B. K., et al. (2006). Assumption-free estimation of heritability from genome-wide identity-by-descent sharing between full siblings. PLoS Genetics, 2, e41.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Yang, J., Manolio, T. A., Pasquale, L. R., Boerwinkle, E., Caporaso, N., Cunningham, J. M., et al. (2011). Genome partitioning of genetic variation for complex traits using common SNPs. Nature Genetics, 43, 519–525. doi: 10.1038/ng.823.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Zandi, P. P., Wilcox, H. C., Dong, L., Chon, S., & Maher, B. (2012). Genes as a source of risk for mental disorders. Public Mental Health, 201Google Scholar
  79. Zaykin, D. V., & Zhivotovsky, L. A. (2005). Ranks of genuine associations in whole-genome scans. Genetics, 171, 813–823.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Society for Prevention Research 2017

Authors and Affiliations

  1. 1.Department of Psychology and NeuroscienceBaylor UniversityWacoUSA
  2. 2.Department of Mental HealthJohns Hopkins Bloomberg School of Public HealthBaltimoreUSA

Personalised recommendations