Skip to main content
Log in

Naturalistic Experimental Designs as Tools for Understanding the Role of Genes and the Environment in Prevention Research

  • Published:
Prevention Science Aims and scope Submit manuscript

Abstract

Before genetic approaches were applied in experimental studies with human populations, they were used by animal and plant breeders to observe, and experimentally manipulate, the role of genes and environment on specific phenotypic or behavioral outcomes. For obvious ethical reasons, the same level of experimental control is not possible in human populations. Nonetheless, there are natural experimental designs in human populations that can serve as logical extensions of the rigorous quantitative genetic experimental designs used by animal and plant researchers. Applying concepts such as cross-fostering and common garden rearing approaches from the life science discipline, we describe human designs that can serve as naturalistic proxies for the controlled quantitative genetic experiments facilitated in life sciences research. We present the prevention relevance of three such human designs: (1) children adopted at birth by parents to whom they are not genetically related (common garden approach); (2) sibling designs where one sibling is reared from birth with unrelated adoptive parents and the other sibling is reared from birth by the biological mother of the sibling pair (cross-fostering approach); and (3) in vitro fertilization designs, including egg donation, sperm donation, embryo donation, and surrogacy (prenatal cross-fostering approach). Each of these designs allows for differentiation of the effects of the prenatal and/or postnatal rearing environment from effects of genes shared between parent and child in naturalistic ways that can inform prevention efforts. Example findings from each design type are provided and conclusions drawn about the relevance of naturalistic genetic designs to prevention science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Baumrind, D. (1971). Current patterns of parental authority. Developmental Psychology, 4, 1–103.

    Article  Google Scholar 

  • Belsky, J., & Pluess, M. (2009). Beyond diathesis stress: Differential susceptibility to environmental influences. Psychological Bulletin, 135, 885–908. doi:10.1037/a0017376.

    Article  PubMed  Google Scholar 

  • Bouchard, T. J., Lykken, D. T., McGue, M., Segal, N. L., & Tellegen, A. (1990). Sources of human psychological differences: The Minnesota study of twins reared apart. Science, 250, 223–228. doi:10.1126/science.2218526.

    Article  PubMed  Google Scholar 

  • Brody, G. H., Yu, T., Chen, Y. F., Kogan, S. M., Evans, G. W., Windle, M., … & Philibert, R. A. (2013). Supportive family environments, genes that confer sensitivity, and allostatic load among rural African American emerging adults: A prospective analysis. Journal of Family Psychology, 27, 22–29. doi:10.1037/a0027829.

  • Cadoret, R. J., Yates, W. R., Woodworth, G., & Stewart, M. A. (1995). Genetic-environmental interaction in the genesis of aggressivity and conduct disorders. Archives of General Psychiatry, 52, 916–924. doi:10.1001/archpsyc.1995.03950230030006.

    Article  CAS  PubMed  Google Scholar 

  • Cho, I., & Blaser, M. J. (2012). The human microbiome: At the interface of health and disease. Nature Reviews Genetics, 13, 260–270. doi:10.1038/nrg3182.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Darwin, C. (1859). On the origin of the species by natural selection. London: Murray.

    Google Scholar 

  • Dick, D. M., Meyers, J. L., Latendresse, S. J., Creemers, H. E., Lansford, J. E., Pettit, G. S., … & Buitelaar, J. K. (2011). CHRM2, Parental monitoring, and adolescent externalizing behavior evidence for gene-environment interaction. Psychological Science, 22, 481–489. doi:10.1177/0956797611403318.

  • Eley, T. C., McAdams, T. A., Rijsdijk, F. V., Lichtenstein, P., Narusyte, J., Reiss, D., Spotts, E. L., Ganiban, J. M., & Neiderhiser, J. M. (2015). The intergenerational transmission of anxiety: A children-of-twins study. American Journal of Psychiatry, 172, 630–637. doi:10.1176/appi.ajp.2015.14070818.

    Article  PubMed  Google Scholar 

  • Ellis, B. J., Boyce, W. T., Belsky, J., Bakermans-Kranenburg, M. J., & Van IJzendoorn, M. H. (2011). Differential susceptibility to the environment: An evolutionary–neurodevelopmental theory. Development and Psychopathology, 23, 7–28. doi:10.1017/S0954579410000611.

    Article  PubMed  Google Scholar 

  • Falconer, D., & Mackay, T. (1996). Introduction to quantitative genetics. London: Prentice Hall.

    Google Scholar 

  • Fisher, R. A. (1918). The correlation between relatives on the supposition of Mendelian inheritance. Philosophical Transactions of the Royal Society of Edinburgh, 52, 399–433. doi:10.1017/S0080456800012163.

    Article  Google Scholar 

  • Foster, J. A., & Neufeld, K.-A. (2013). Gut–brain axis: How the microbiome influences anxiety and depression. Trends in Neurosciences, 36, 305–312. doi:10.1016/j.tins.2013.01.005.

    Article  CAS  PubMed  Google Scholar 

  • Franzosa, E. A., Huang, K., Meadow, J. F., Gevers, D., Lemon, K. P., Bohannan, B. J., & Huttenhower, C. (2015). Identifying personal microbiomes using metagenomic codes. Proceedings of the National Academy of Sciences, 112, E2930–E2938. doi:10.1073/pnas.1423854112.

    Article  CAS  Google Scholar 

  • Galton, F. (1883). Inquiries into human faculty and its development. London: Macmillan.

    Book  Google Scholar 

  • Ge, X., Conger, R. D., Cadoret, R. J., Neiderhiser, J. M., Yates, W., Troughton, E., & Stewart, M. A. (1996). The developmental interface between nature and nurture: A mutual influence model of child antisocial behavior and parent behaviors. Developmental Psychology, 32, 574–589. doi:10.1037/0012-1649.32.4.574.

  • Goodrich, J. K., Davenport, E. R., Beaumont, M., Jackson, M. A., Knight, R., Ober, C., … & Ley, R. E. (2016). Genetic determinants of the gut microbiome in UK Twins. Cell Host & Microbe, 19, 731–743. doi:10.1016/j.chom.2016.04.017.

  • Grice, E. A., & Segre, J. A. (2012). The human microbiome: Our second genome. Annual Review of Genomics and Human Genetics, 13, 151–170. doi:10.1146/annurev-genom-090711-163814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harold, G. T., Rice, F., Hay, D. F., Boivin, J., Van Den Bree, M., & Thapar, A. (2011). Familial transmission of depression and antisocial behavior symptoms: Disentangling the contribution of inherited and environmental factors and testing the mediating role of parenting. Psychological Medicine, 41, 1175–1185. doi:10.1017/S0033291710001753.

    Article  CAS  PubMed  Google Scholar 

  • Harold, G. T., Leve, L. D., Barrett, D., Elam, K., Neiderhiser, J. M., Natsuaki, M. N., …& Thapar, A. (2013). Biological and rearing mother influences on child ADHD symptoms: Revisiting the developmental interface between nature and nurture. Journal of Child Psychology and Psychiatry, 54, 1038–1046. doi:10.1111/jcpp.12100.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hershberger, S. L. (1994). Genotype-environment interaction and correlation. In J. C. DeFries, R. Plomin, & D. W. Fulker (Eds.), Nature and nurture during middle childhood (pp. 281–294). Malden: Blackwell.

    Google Scholar 

  • Horwitz, B. N., & Neiderhiser, J. M. (Eds.). (2015). Behavioral genetics of interpersonal relationships across the lifespan. New York: Springer.

    Google Scholar 

  • Kendler, K. S., Walters, E. E., Neale, M. C., Kessler, R. C., Heath, A. C., & Eaves, L. J. (1995). The structure of the genetic and environmental risk factors for six major psychiatric disorders in women: Phobia, generalized anxiety disorder, panic disorder, bulimia, major depression, and alcoholism. Archives of General Psychiatry, 52, 374–383.

    Article  CAS  PubMed  Google Scholar 

  • Kendler, K. S., Ohlsson, H., Sundquist, J., & Sundquist, K. (2016). The rearing environment and risk for drug abuse: A Swedish national high-risk adopted and not adopted co-sibling control study. Psychological Medicine, 46, 1359–1366. doi:10.1017/S0033291715002858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klahr, A. M., & Burt, S. A. (2014). Elucidating the etiology of individual differences in parenting: A meta-analysis of behavioral genetic research. Psychological Bulletin, 140, 544–586. doi:10.1037/a0034205.

    Article  PubMed  Google Scholar 

  • Lemery-Chalfant, K., Kao, K., Swann, G., & Goldsmith, H. H. (2013). Childhood temperament: Passive gene–environment correlation, gene–environment interaction, and the hidden importance of the family environment. Development and Psychopathology, 25, 51–63. doi:10.1017/S0954579412000892.

    Article  PubMed  PubMed Central  Google Scholar 

  • Leve, L. D., Harold, G. T., Ge, X., Neiderhiser, J. M., Shaw, D., Scaramella, L. V., & Reiss, D. (2009). Structured parenting of toddlers at high versus low genetic risk: Two pathways to child problems. Journal of the American Academy of Child and Adolescent Psychiatry, 48, 1102–1109. doi:10.1097/CHI.0b013e3181b8bfc0.

    Article  PubMed  PubMed Central  Google Scholar 

  • Leve, L. D., Kerr, D., Shaw, D., Ge, X., Neiderhiser, J. M., Reid, J. B., …& Reiss, D. (2010). Infant pathways to externalizing behavior: Evidence of genotype x environment interaction. Child Development, 81, 340–356.

    Article  PubMed  PubMed Central  Google Scholar 

  • Leve, L. D., Neiderhiser, J. M., Shaw, D. S., Ganiban, J., Natsuaki, M. N., & Reiss, D. (2013). The early growth and development study: A prospective adoption study of child behavior from birth through middle childhood. Twin Research and Human Genetics, 16, 412–423. doi:10.1017/thg.2012.126.

    Article  PubMed  Google Scholar 

  • Lunkenheimer, E. S., Dishion, T. J., Shaw, D. S., Connell, A. M., Gardner, F., Wilson, M. N., & Skuban, E. M. (2008). Collateral benefits of the family check-up on early childhood school readiness: Indirect effects of parents’ positive behavior support. Developmental Psychology, 44, 1737–1752.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mackay, T. F. C. (2001). The genetic architecture of quantitative traits. Annual Review of Genetics, 35, 303–339. doi:10.1146/annurev.genet.35.102401.090633.

    Article  CAS  PubMed  Google Scholar 

  • Meadow, J. F., Altrichter, A. E., Bateman, A. C., Stenson, J., Brown, G. Z., Green, J. L., & Bohannan, B. J. (2015). Humans differ in their personal microbial cloud. PeerJ, 3, e1258.

    Article  PubMed  PubMed Central  Google Scholar 

  • Meaney, M. J. (2001). Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Annual Review of Neuroscience, 24, 1161–1192. doi:10.1146/annurev.neuro.24.1.1161.

    Article  CAS  PubMed  Google Scholar 

  • Mednick, S. A., Gabrielli, W. F., & Hutchings, B. (1984). Genetic influences in criminal convictions: Evidence from an adoption cohort. Science, 224, 891–894.

    Article  CAS  PubMed  Google Scholar 

  • Mendel, G. (1863). Experiments in plant hybridization. Cambridge: Cambridge University Press.

    Google Scholar 

  • Mulle, J. G., Sharp, W. G., & Cubells, J. F. (2013). The gut microbiome: A new frontier in autism research. Current Psychiatry Reports, 15, 1–9. doi:10.1007/s11920-012-0337-0.

    Article  Google Scholar 

  • Neiderhiser, J. M., Reiss, D., Lichtenstein, P., Spotts, E. L., & Ganiban, J. (2007). Father-adolescent relationships and the role of genotype-environment correlation. Journal of Family Psychology, 21, 560–571. doi:10.1037/0893-3200.21.4.560.

    Article  PubMed  Google Scholar 

  • O’Connor, T. G., Deater-Deckard, K., Fulker, D., Rutter, M., & Plomin, R. (1998). Genotype–environment correlations in late childhood and early adolescence: Antisocial behavioral problems and coercive parenting. Developmental Psychology, 34, 970–981.

    Article  PubMed  Google Scholar 

  • Pedersen, N. L., McClearn, G. E., Plomin, R., Nesselroade, J. R., Berg, S., & DeFaire, U. (1991). The Swedish adoption twin study of aging: An update. Acta Geneticae Medicae et Gemellologiae: Twin Research, 40, 7–20. doi:10.1017/S0001566000006681.

    Article  CAS  PubMed  Google Scholar 

  • Plomin, R., & DeFries, J. C. (1983). The Colorado adoption project. Child Development, 54, 276–289. doi:10.2307/1129691.

    Article  CAS  PubMed  Google Scholar 

  • Rhea, S. A., Bricker, J. B., Wadsworth, S. J., & Corley, R. P. (2013). The Colorado adoption project. Twin Research and Human Genetics, 16, 358–365. doi:10.1017/thg.2012.109.

    Article  PubMed  Google Scholar 

  • Rice, F., Harold, G. T., Boivin, J., Hay, D. F., van den Bree, M., & Thapar, A. (2009). Disentangling prenatal and inherited influence in humans with an experimental design. Proceedings of the National Academy of Sciences, 16, 2464–2467. doi:10.1073/pnas.0808798106.

    Article  Google Scholar 

  • Rutter, M., Pickles, A., Murray, R., & Eaves, L. (2001). Testing hypotheses on specific environmental causal effects on behavior. Psychological Bulletin, 127, 291–324.

    Article  CAS  PubMed  Google Scholar 

  • Sale, M., Mychaleckyj, J., & Chen, W. (2009). Planning and executing a genome wide association study (GWAS). Molecular Endocrinology: Methods and Protocols, 590, 403–418. doi:10.1007/978-1-60327-378-7_25.

    Article  CAS  Google Scholar 

  • Schiff, M., Duyme, M., Dumaret, A., & Tomkiewicz, S. (1982). How much could we boost scholastic achievement and IQ scores? A direct answer from a French adoption study. Cognition, 12, 165–196. doi:10.1016/0010-0277(82)90011-7.

    Article  CAS  PubMed  Google Scholar 

  • Sorensen, T. I., Price, R. A., Stunkard, A. J., & Schulsinger, F. (1989). Genetics of obesity in adult adoptees and their biological siblings. British Medical Journal, 298, 87–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thapar, A., Harold, G., Rice, F., Ge, X., Boivin, J., Hay, D., … & Lewis, A. (2007). Do intrauterine or genetic influences explain the foetal origins of chronic disease? A novel experimental method for disentangling effects. BMC Medical Research Methodology, 7, 1-8. doi:10.1186/1471-2288-7-25.

  • Zeng, Z. B., Kao, C. H., & Basten, C. J. (1999). Estimating the genetic architecture of quantitative traits. Genetical Research, 74, 279–289. doi:10.1017/S0016672399004255.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie D. Leve.

Ethics declarations

Funding

Funding for this work was provided by R01 DA035062, P50 DA035763, and R01 DA020585 from NIDA; R01 HD042608 and R56 HD042608 from NICHD; UG3 OD023389 from the Office of the Director; and R24 GM079486 and P50 GM098911 from NIGMS, U.S. PHS. Funding was also provided by DEB 0949053 and IOS 102728 from NSF, from a Wellcome Trust Showcase Award, a Wellcome Trust Project grant, a Project Grant award from the Nuffield Foundation, and ES/L014718/1 from the Economic and Social Research Council. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This is a review article and no original research was conducted for this manuscript. The original studies described in this manuscript that were led by the current authors (EGDS, EPoCh, and Cardiff IVF Study) received approval from their respective Institutional Review Boards. All procedures performed in these three studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed Consent

No original research was conducted in the course of this work. Informed consent was obtained from all individual participants included in the three studies described in this manuscript that were led by the current authors (EGDS, EPoCh, and Cardiff IVF Study).

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 129 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leve, L.D., Neiderhiser, J.M., Harold, G.T. et al. Naturalistic Experimental Designs as Tools for Understanding the Role of Genes and the Environment in Prevention Research. Prev Sci 19, 68–78 (2018). https://doi.org/10.1007/s11121-017-0746-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11121-017-0746-8

Keywords

Navigation