Skip to main content
Log in

Methods for Multilevel Ordinal Data in Prevention Research

  • Published:
Prevention Science Aims and scope Submit manuscript

Abstract

This paper discusses statistical models for multilevel ordinal data that may be more appropriate for prevention outcomes than models that assume continuous measurement and normality. Prevention outcomes often have distributions that make them inappropriate for many popular statistical models that assume normality and are more appropriately considered ordinal outcomes. Despite this, the modeling of ordinal outcomes is often not well understood. This article discusses ways to analyze multilevel ordinal outcomes that are clustered or longitudinal, including the proportional odds regression model for ordinal outcomes, which assumes that the covariate effects are the same across the levels of the ordinal outcome. The article will cover how to test this assumption and what to do if it is violated. It will also discuss application of these models using computer software programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agresti, A. (2002). Categorical data analysis (2nd ed.). Hoboken: Wiley.

    Book  Google Scholar 

  • Agresti, A., & Natarajan, R. (2001). Modeling clustered ordered categorical data: A survey. International Statistical Review, 69, 345–371.

    Article  Google Scholar 

  • Armstrong, B. G., & Sloan, M. (1989). Ordinal regression models for epidemiologic data. American Journal of Epidemiology, 129, 191–204.

    CAS  PubMed  Google Scholar 

  • Bauer, D. J., & Sterba, S. K. (2011). Fitting multilevel models with ordinal outcomes: Performance of alternative specifications and methods of estimation. Psychological Methods, 16, 337–390.

    Article  Google Scholar 

  • Bock, R. D., & Shilling, S. (1997). High-dimensional full-information item factor analysis. In M. Berkane (Ed.), Latent variable modeling and applications to causality (pp. 163–176). New York: Springer.

    Chapter  Google Scholar 

  • Breslow, N. E., & Lin, X. (1995). Bias correction in generalised linear mixed models with a single component of dispersion. Biometrika, 82, 81–91.

    Article  Google Scholar 

  • Flay BR, Brannon BR, Johnson CA, Hansen WB, Ulene AL, Whitney-Saltiel DAP., et al. (1988). The television school and family smoking prevention and cessation project. 1. Theoretical basis and program development. Preventive Medicine, 17, 585–607.

  • Goldstein, H. (2011). Multilevel statistical models (4th ed.). New York: Wiley.

    Google Scholar 

  • Goldstein, H., & Rasbash, J. (1996). Improved approximations for multilevel models with binary responses. Journal of the Royal Statistical Society, Series B, 159, 505–513.

    Article  Google Scholar 

  • Hamilton, M. (1960). A rating scale for depression. Journal of Neurology and Neurosurgical Psychiatry, 23, 56–62.

    Article  CAS  Google Scholar 

  • Hedeker, D. (2004). An introduction to growth modeling. In D. Kaplan (Ed.), The SAGE handbook of quantitative methodology for the social sciences (pp. 215–234). Thousand Oaks: Sage Publications Inc.

    Google Scholar 

  • Hedeker, D., & Gibbons, R. D. (1994). A random effects ordinal regression model for multilevel analysis. Biometrics, 50, 933–944.

    Article  CAS  PubMed  Google Scholar 

  • Hedeker, D., & Gibbons, R. D. (1996). MIXOR: A computer program for mixed-effects ordinal probit and logistic regression analysis. Computer Methods and Programs in Biomedicine, 49, 157–176.

    Article  CAS  PubMed  Google Scholar 

  • Hedeker, D., & Gibbons, R. D. (2006). Longitudinal data analysis. New York: Wiley.

    Google Scholar 

  • Hedeker, D., & Mermelstein, R. J. (1998). A multilevel thresholds of change model for analysis of stages of change data. Multivariate Behavioral Research, 33, 427–455.

    Article  Google Scholar 

  • Hedeker, D., & Mermelstein, R. J. (2000). Analysis of longitudinal substance use outcomes using ordinal random-effects regression models. Addiction, 95, S381–S394.

    Article  PubMed  Google Scholar 

  • Hedeker, D., & Mermelstein, R. J. (2011). Multilevel analysis of ordinal outcomes related to survival data. In J. J. Hox & J. K. Roberts (Eds.), Handbook of multilevel analysis (pp. 115–136). New York: Routledge.

    Google Scholar 

  • Hedeker, D., Mermelstein, R. J., & Weeks, K. A. (1999). The thresholds of change model: An approach for analyzing stages of change data. Annals of Behavioral Medicine, 21, 61–70.

    Article  CAS  PubMed  Google Scholar 

  • Hedeker, D., Siddiqui, O., & Hu, F. B. (2000). Random-effects regression analysis of correlated grouped-time survival data. Statistical Methods in Medical Research, 9, 161–179.

    Article  CAS  PubMed  Google Scholar 

  • Hedeker, D., Gibbons, R. D., du Toit, M., & Cheng, Y. (2008). SuperMix: Mixed effects models. Lincolnwood: Scientific Software International, Inc.

    Google Scholar 

  • Liu, Q., & Pierce, D. A. (1994). A note on Gauss-Hermite quadrature. Biometrika, 81, 624–629.

    Google Scholar 

  • McCullagh, P. (1980). Regression models for ordinal data (with discussion). Journal of the Royal Statistical Society, Series B, 42, 109–142.

    Google Scholar 

  • McKelvey, R. D., & Zavoina, W. (1975). A statistical model for the analysis of ordinal level dependent variables. Journal of Mathematical Sociology, 4, 103–120.

    Article  Google Scholar 

  • Pinheiro, J. C., & Bates, D. M. (1995). Approximations to the log-likelihood function in the non-linear mixed-effects model. Journal of Computational and Graphical Statistics, 4, 12–35.

    Google Scholar 

  • Prochaska, J. O., & DiClemente, C. (1983). Stages and processes of self-change in smoking: Toward an integrative model of change. Journal of Consulting and Clinical Psychology, 51, 390–395.

    Article  CAS  PubMed  Google Scholar 

  • Prochaska, J. O., DiClemente, C., & Norcross, J. (1992). In search of how people change: Applications to addictive behaviors. American Psychologist, 47, 1102–1114.

    Article  CAS  PubMed  Google Scholar 

  • Rabe-Hesketh, S., Skrondal, A., & Pickles, A. (2002). Reliable estimation of generalized linear mixed models using adaptive quadrature. The Stata Journal, 2, 1–21.

    Google Scholar 

  • Rabe-Hesketh, S., Skrondal, A., & Pickles, A. (2004). Gllamm manual. Berkeley, CA: U.C. Berkeley Division of Biostatistics Working Paper Series. Working Paper 160.

  • Rabe-Hesketh, S., Skrondal, A., & Pickles, A. (2005). Maximum likelihood estimation of limited and discrete dependent variable models with nested random effects. Journal of Econometrics, 128, 301–323.

    Article  Google Scholar 

  • Raman, R., & Hedeker, D. (2005). A mixed-effects regression model for three-level ordinal response data. Statistics in Medicine, 24, 3331–3345.

    Article  PubMed  Google Scholar 

  • Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models (2nd ed.). Thousand Oaks: Sage.

    Google Scholar 

  • Raudenbush, S. W., Yang, M.-L., & Yosef, M. (2000). Maximum likelihood for generalized linear models with nested random effects via high-order, multivariate Laplace approximation. Journal of Computational and Graphical Statistics, 9, 141–157.

    Google Scholar 

  • Reisby, N., Gram, L. F., Bech, P., Nagy, A., Petersen, G. O., Ortmann, J., Ibsen, I., Dencker, S. J., Jacobsen, O., Krautwald, O., Sondergaard, I., & Christiansen, J. (1977). Imipramine: Clinical effects and pharmacokinetic variability. Psychopharmacology, 54, 263–272.

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez, G., & Goldman, N. (1995). An assessment of estimation procedures for multilevel models with binary responses. Journal of the Royal Statistical Society, Series A, 158, 73–89.

    Article  Google Scholar 

  • Rodríquez, G. (2008). Multilevel generalized linear models. In J. de Leeuw & E. Meijer (Eds.), Handbook of multilevel analysis (pp. 335–376). New York: Springer.

    Chapter  Google Scholar 

  • Sankeya, S. S., & Weissfeld, L. A. (1998). A study of the effect of dichotomizing ordinal data upon modeling. Communications in Statistics - Simulation and Computation, 27, 871–887.

    Article  Google Scholar 

  • SAS/Stat. (2011). Sas/stat user’s guide, version 9.3. Cary: SAS Institute, Inc.

    Google Scholar 

  • Seiden, L. S., & Dykstra, L. A. (1977). Psychopharmacology: A biochemical and behavioral approach. New York: Van Nostrand Reinhold.

    Google Scholar 

  • Siddiqui, O., Hedeker, D., Flay, B. R., & Hu, F. B. (1996). Intraclass correlation estimates in a school-based smoking prevention study: Outcome and mediating variables, by gender and ethnicity. American Journal of Epidemiology, 144, 425–433.

    Article  CAS  PubMed  Google Scholar 

  • StataCorp. (2013). Stata statistical software: Release 13. College Station: Stata Corporation.

    Google Scholar 

  • Strömberg, U. (1996). Collapsing ordered outcome categories: A note of concern. American Journal of Epidemiology, 144, 421–424.

    Article  PubMed  Google Scholar 

  • Tutz, G., & Hennevogl, W. (1996). Random effects in ordinal regression models. Computational Statistics and Data Analysis, 22, 537–557.

    Article  Google Scholar 

  • Winship, C., & Mare, R. D. (1984). Regression models with ordinal variables. American Sociological Review, 49, 512–525.

    Article  Google Scholar 

Download references

Acknowledgments

The project described was supported by Award Number P01CA098262 from the National Cancer Institute. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald Hedeker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hedeker, D. Methods for Multilevel Ordinal Data in Prevention Research. Prev Sci 16, 997–1006 (2015). https://doi.org/10.1007/s11121-014-0495-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11121-014-0495-x

Keywords

Navigation