Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Universality Properties of School-Based Preventive Intervention Targeted at Cannabis Use

  • 437 Accesses

  • 6 Citations

Abstract

This study aims to examine the effect of school-based preventive intervention on cannabis use in Czech adolescents with different levels of risk factors and provide evidence of its universality. A randomized controlled prevention trial with six waves was conducted over a period of 33 months. We used a two-level logistic random-intercept model for panel data; we first looked at the statistical significance of the effect of the intervention on cannabis use, controlling for the characteristics of the children and time dummies. Then we analyzed the effects of the interactions between the intervention and the characteristics of the children on cannabis use and related it to the definition of universal preventive interventions. The setting for the study was in basic schools in the Czech Republic in the years 2007–2010. A total of 1,874 sixth-graders (mean age 11.82 years) who completed the baseline testing. According to our results, the prevention intervention was effective. We found all the selected characteristics of the children to be relevant in relation to cannabis use, except their relationships with their friends. We showed empirically that the intervention is universal in two dimensions for the selected characteristics of the children. First, all adolescents who undergo the intervention are expected to benefit. Second, with respect to the effect of the intervention on cannabis use, the total level of individual risk of cannabis use is superior to the composition of the risk factors in the individual risk profile. We present indicative evidence that the drug prevention intervention may be considered a true universal preventive intervention.

This is a preview of subscription content, log in to check access.

Notes

  1. 1.

    Imputation of missing data did not affect any of the outcomes reported.

References

  1. Allen, J. P., Chango, J., Szwedo, D., Schad, M., & Marston, E. (2012). Predictors of susceptibility to peer influence regarding substance use in adolescence. Child Development, 83, 337–350. doi:10.1111/j.1467-8624.2011.01682.x.

  2. Becoña, E., Martínez, Ú., Calafat, A., Fernández-Hermid, J. R., Juan, M., Sumnall, H., & Gabrhelík, R. (2013). Parental permissiveness, control, and affect and drug use among adolescents. Psicothema, 25, 292–298. doi:10.7334/psicothema2012.294.

  3. Bonn-Miller, M. O., Zvolensky, M. J., Bernstein, A., & Stickle, T. R. (2008). Marijuana coping motives interact with marijuana use frequency to predict anxious arousal, panic related catastrophic thinking, and worry among current marijuana users. Depression and Anxiety, 25, 862–873. doi:10.1002/da.20370.

  4. Branstetter, S. A., Furman, W., & Cottrell, L. (2009). The influence of representations of attachment, maternal-adolescent relationship quality, and maternal monitoring on adolescent substance use: A 2-year longitudinal examination. Child Development, 80, 1448–1462. doi:10.1111/j.1467-8624.2009.01344.x.

  5. Brook, J. S., Balka, E. B., & Whiteman, M. (1999). The risks for late adolescence of early adolescent marijuana use. American Journal of Public Health, 89, 1549–1554.

  6. Brook, J. S., Brook, D. W., Arencibia-Mireles, O., Richter, L., & Whiteman, M. (2001). Risk factors for adolescent marijuana use across cultures and across time. Journal of Genetic Psychology, 162, 357–374. doi:10.1080/00221320109597489.

  7. Brown, C. H., Wang, W., Kellam, S. G., Muthén, B. O., Petras, H., Toyinbo, P., & Windham, A. (2008). Methods for testing theory and evaluating impact in randomized field trials: Intent-to-treat analyses for integrating the perspectives of person, place, and time. Drug and Alcohol Dependence, 95, S74–S104. doi:10.1016/j.drugalcdep.2007.11.013.

  8. Charvát, M., Jurystová, L., & Miovský, M. (2012). Four-level model of qualifications for the practitioners of the primary prevention of risk behaviour in the school system. Adiktologie, 12, 190–211.

  9. Crano, W. D., Siegel, J. T., Alvaro, E. M., Lac, A., & Hemovich, V. (2008). The at-risk adolescent marijuana nonuser: Expanding the standard distinction. Prevention Science, 9, 129–137. doi:10.1007/s11121-008-0090-0.

  10. Creemers, H. E., Dijkstra, J. K., Vollebergh, W. A., Ormel, J., Verhulst, F. C., & Huizink, A. C. (2010). Predicting life-time and regular cannabis use during adolescence; the roles of temperament and peer substance use: The TRAILS study. Addiction, 105, 699–708. doi:10.1111/j.1360-0443.2009.02819.x.

  11. Crumley, F. E. (1990). Substance abuse and adolescent suicidal behavior. JAMA, 263, 3051–3056.

  12. Dane, A. V., & Schneider, B. H. (1998). Program integrity in primary and early secondary prevention: Are implementation effects out of control? Clinical Psychology Review, 18, 23–45.

  13. Diego, M. A., Field, T. M., & Sanders, C. E. (2003). Academic performance, popularity, and depression predict adolescent substance use. Adolescence, 38(149), 35–42.

  14. Eisen, M., Zellman, G. L., & Murray, L. M. (2003). Evaluating the Lions–Quest “Skills for Adolescence” drug education program Second-year behavior outcomes. Addictive Behaviors, 28, 883–897. doi:10.1016/S0306-4603(01)00292-1.

  15. Elliott, D. S., & Mihalic, S. (2004). Issues in disseminating and replicating effective prevention programs. Prevention Science, 5, 47–53.

  16. Esposito-Smythers, C., & Spirito, A. (2004). Adolescent substance use and suicidal behavior: A review with implications for treatment research. Alcoholism, Clinical and Experimental Research, 28, 77S–88S.

  17. Fergusson, D. M., & Boden, J. M. (2008). Cannabis use and later life outcomes. Addiction, 103, 969–976. doi:10.1111/j.1360-0443.2008.02221.x. discussion 977-968.

  18. Flay, B. R., Biglan, A., Boruch, R. F., Castro, F. G., Gottfredson, D., Kellam, S., & Ji, P. (2005). Standards of evidence: Criteria for efficacy, effectiveness and dissemination. Prevention Science, 6, 151–175.

  19. Foxcroft, D. R., & Tsertsvadze, A. (2011). Universal multi-component prevention programs for alcohol misuse in young people. Cochrane Database of Systematic Reviews. DOI: 009310.001002/14651858.CD14009307

  20. Gabrhelik, R., Duncan, A., Miovsky, M., Furr-Holden, C. D., Stastna, L., & Jurystova, L. (2012). "Unplugged": A school-based randomized control trial to prevent and reduce adolescent substance use in the Czech Republic. Drug and Alcohol Dependence, 124, 79–87. doi:10.1016/j.drugalcdep.2011.12.010.

  21. Ghosh-Dastidar, B., Longshore, D. L., Ellickson, P. L., & McCaffrey, D. F. (2004). Modifying pro-drug risk factors in adolescents: Results from project ALERT. Health Education and Behavior, 31, 318–334.

  22. Gordon, R. (1987). An operational classification of disease prevention. In J. A. Steinberg & M. M. Silverman (Eds.), Preventing mental disorders (pp. 20–26). Rockville, MD: U.S. Department of Health and Human Services.

  23. Griffin, K. W., Botvin, G. J., Nichols, T. R., & Doyle, M. M. (2003). Effectiveness of a universal drug abuse prevention approach for youth at high risk for substance use initiation. Preventive Medicine, 36, 1–7.

  24. Hibell, B., Guttormsson, U., Ahlström, S., Balakireva, O., Bjarnason, T., Kokkevi, A., & Kraus, L. (2012). The 2011 ESPAD report: Substance use among students in 36 European countries. Stockholm, Sweden: The Swedish Council for Information on Alcohol and Other Drugs (CAN) and the Pompidou Group at the Council of Europe.

  25. Hill, L. G., Rosenman, R., Tennekoon, V., & Mandal, B. (2013). Selection effects and prevention program outcomes. Prevention Science. doi:10.1007/s11121-012-0342-x.

  26. Johnston, L. D., O’Malley, P. M., Bachman, J. G., & Schulenberg, J. E. (2013). Monitoring the future national results on drug use: 2012 overview, key findings on adolescent drug use. Ann Arbor: Institute for Social Research, The University of Michigan.

  27. Kobus, K., & Henry, D. B. (2010). Interplay of network position and peer substance use in early adolescent cigarette, alcohol, and marijuana use. Journal of Early Adolescence, 30, 225–245. doi:10.1177/0272431609333300.

  28. Longshore, D., Ellickson, P. L., McCaffrey, D. F., & St Clair, P. A. (2007). School-based drug prevention among at-risk adolescents: Effects of ALERT plus. Health Education and Behavior, 34, 651–668. doi:10.1177/1090198106294895.

  29. Mason, M. J., Mennis, J., Linker, J., Bares, C., & Zaharakis, N. (2013). Peer attitudes effects on adolescent substance use: The moderating role of race and gender. Prevention Science, Feb 13. [Epub ahead of print]

  30. McGrath, Y., Sumnall, H., McVeigh, J., & Bellis, M. (2006). Drug use prevention among young people: A review of reviews. London, UK: National Institute for Health and Clinical Excellence.

  31. Miovsky, M., Stastna, L., Gabrhelik, R., & Jurystova, L. (2011). Evaluation of school-based preventive interventions in the Czech Republic: Examples of good practice. Adiktologie, 11, 236–247.

  32. Mrazek, P. J., & Haggerty, R. J. (1994). Reducing risks for mental disorders: Frontiers for preventive intervention research. Washington, DC: National Academy Press.

  33. Muscat, R. (2002). Students survey in secondary schools: Malta 1999. Malta: Agency against Drug and Alcohol Abuse.

  34. Oesterle, S., Hawkins, J. D., Fagan, S. A., Abbott, R. D., & Catalano, R. F. (2010). Testing the universality of the effects of the communities that care prevention system for preventing adolescent drug use and delinquency. Prevention Science, 11, 411–423. doi:10.1007/s11121-010-0178-1.

  35. Perez, A., Ariza, C., Sanchez-Martinez, F., & Nebot, M. (2010). Cannabis consumption initiation among adolescents: A longitudinal study. Addictive Behaviors, 35, 129–134. doi:10.1016/j.addbeh.2009.09.018.

  36. Rabe-Hesketh, S., & Skrondal, A. (2012). Multilevel and longitudinal modeling using Stata (3rd ed.). College Station, TX: Stata Press.

  37. Schaub, M., Gmel, G., Annaheim, B., Mueller, M., & Schwappach, D. (2010). Leisure time activities that predict initiation, progression and reduction of cannabis use: A prospective, population-based panel survey. Drug and Alcohol Review, 29, 378–384. doi:10.1111/j.1465-3362.2009.00156.x.

  38. Shedler, J., & Block, J. (1990). Adolescent drug use and psychological health—A longitudinal inquiry. American Psychologist, 45, 612–630. doi:10.1037//0003-066x.45.5.612.

  39. Sloboda, Z., Stephens, R. C., Stephens, P. C., Grey, S. F., Teasdale, B., Hawthorne, R. D., & Marquette, J. F. (2009). The adolescent substance abuse prevention study: A randomized field trial of a universal substance abuse prevention program. Drug and Alcohol Dependence, 102, 1–10. doi:10.1016/j.drugalcdep.2009.01.015.

  40. Sloboda, Z., Glantz, M. D., & Tarter, R. E. (2012). Revisiting the concepts of risk and protective factors for understanding the etiology and development of substance use and substance use disorders: Implications for prevention. Substance Use and Misuse, 47, 944–962. doi:10.3109/10826084.2012.663280.

  41. Spoth, R., Shin, C., Guyll, M., Redmond, C., & Azevedo, K. (2006). Universality of effects: An examination of the comparability of long-term family intervention effects on substance use across risk-related subgroups. Prevention Science, 7, 209–224.

  42. Storr, C. L., Ialongo, N. S., Kellam, S. G., & Anthony, J. C. (2002). A randomized controlled trial of two primary school intervention strategies to prevent early onset tobacco smoking. Drug and Alcohol Dependence, 66, 51–60. doi:10.1016/s0376-8716(01)00184-3.

  43. Sussman, S., Earleywine, M., Wills, T., Cody, C., Biglan, T., Dent, C. W., & Newcomb, M. D. (2004). The motivation, skills, and decision-making model of “drug abuse” prevention. Substance Use and Misuse, 39, 1971–2016.

  44. United Nations Interregional Crime and Justice Research Institute. (2003). School-based drug education: A guide for practitioners and the wider community. Vienna, Austria: United Nations Office for Drug Control and Crime Prevention.

  45. van den Bree, M. B. M., & Pickworth, W. B. (2005). Risk factors predicting changes in marijuana involvement in teenagers. Archives of General Psychiatry, 62, 311–319. doi:10.1001/archpsyc.62.3.311.

  46. Vigna-Taglianti, F., Vadrucci, S., Faggiano, F., Burkhart, G., Siliquini, R., Galanti, M. R., & EU-Dap Study Group. (2009). Is universal prevention against youths' substance misuse really universal? Gender-specific effects in the EU-Dap school-based prevention trial. Journal of Epidemiology and Community Health, 63, 722–728. doi:10.1136/jech.2008.081513.

  47. von Sydow, K., Lieb, R., Pfister, H., Hofler, M., & Wittchen, H. U. (2002). What predicts incident use of cannabis and progression to abuse and dependence? A 4-year prospective examination of risk factors in a community sample of adolescents and young adults. Drug and Alcohol Dependence, 68, 49–64. doi:10.1016/s0376-8716(02)00102-3.

  48. Wang, J., Simons-Morton, B. G., Farhart, T., & Luk, J. W. (2009). Socio-demographic variability in adolescent substance use: Mediation by parents and peers. Prevention Science, 10, 387–396. doi:10.1007/s11121-009-0141-1.

  49. Weiss, J. W., Merrill, V., & Akagha, K. (2011). Substance use and its relationship to family functioning and self-image in adolescents. Journal of Drug Education, 41, 79–97. doi:10.2190/DE.41.1.e.

Download references

Acknowledgments

This study was supported by the Grant Agency of the Czech Republic grant no. 13-23290S and Charles University in Prague (PRVOUK-P03/LF1/9).

Author information

Correspondence to Roman Gabrhelík.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Miovský, M., Voňková, H., Gabrhelík, R. et al. Universality Properties of School-Based Preventive Intervention Targeted at Cannabis Use. Prev Sci 16, 189–199 (2015). https://doi.org/10.1007/s11121-013-0453-z

Download citation

Keywords

  • Substance use prevention
  • Universal prevention
  • Adolescents
  • Cannabis
  • School-based intervention