Prevention Science

, Volume 15, Issue 6, pp 831–840 | Cite as

Reducing Aggression and Impulsivity Through School-Based Prevention Programs: A Gene by Intervention Interaction

  • Rashelle J. MusciEmail author
  • Catherine P. Bradshaw
  • Brion Maher
  • George R. Uhl
  • Sheppard G. Kellam
  • Nicholas S. Ialongo


A variety of school-based, universal preventive interventions have been developed to address behavioral and mental health problems. Unfortunately, few have been evaluated within the context of randomized controlled trials with long-term follow-up. Even fewer still have examined the potential genetic factors that may drive differential impact of the intervention. In the present analysis, we examine the extent to which the longitudinal effects of two elementary school-based interventions were moderated by the brain-derived neurotrophic factor (BDNF) gene, which has been linked with aggression and impulsive behaviors. The sample included 678 urban, primarily African American children who were randomly assigned along with their teachers to one of three first grade classroom conditions: classroom-centered (CC) intervention, Family School Partnership (FSP), or a control condition. The teacher ratings of the youth's aggressive and impulsive behavior were obtained at baseline and in grades 6–12. Single-nucleotide polymorphisms (SNPs) from the BDNF gene were extracted from the genome-wide data. Longitudinal latent trait–state–error models indicated a significant interaction between a particular profile of the BDNF SNP cluster (46 % of sample) and CC intervention on impulsivity (β = −.27, p < .05). A similar interaction was observed for the BDNF SNP cluster and the CC intervention on aggression (β = −.14, p < .05). The results suggest that the impacts of preventive interventions in early elementary school on late adolescent outcomes of impulsivity and aggression can be potentially modified by genetic factors, such as BDNF. However, replication of these results is necessary before firm conclusions can be drawn.


Aggression Impulsivity Genes Brain-derived neurotrophic factor Intervention Schools 



This research was supported by grants to Nicholas Ialongo from the National Institute of Mental Health (MH57005 and T32 MH18834), the National Institute on Drug Abuse (NIDA R37 DA11796), and a grant to Hoover Adger from the Maternal and Child Health Bureau (T71MC08054).

Supplementary material

11121_2013_441_MOESM1_ESM.doc (29 kb)
Figure 1 (DOC 29 kb)
11121_2013_441_MOESM2_ESM.doc (85 kb)
Figure 2 (DOC 85 kb)


  1. Baron, R. M., & Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51, 1173–1182. doi: 10.1037/0022-3514.51.6.1173.CrossRefPubMedGoogle Scholar
  2. Barrish, H. H., Saunders, M., & Wolf, M. M. (1969). Good behavior game: Effects of individual contingencies for group consequences on disruptive behavior in a classroom. Journal of Applied Behavior Analysis, 2, 119–124. doi: 10.1901/jaba.1969.2-119.PubMedCentralCrossRefPubMedGoogle Scholar
  3. Bradshaw, C. P., Zmuda, J. H., Kellam, S. G., & Ialongo, N. S. (2009). Longitudinal impact of two universal preventive interventions in first grade on educational outcomes in high school. Journal of Educational Psychology, 101, 926–937. doi: 10.1037/a0016586.PubMedCentralCrossRefPubMedGoogle Scholar
  4. Bradshaw, C. P., Schaeffer, C. M., Petras, H., & Ialongo, N. (2010). Predicting negative life outcomes from early aggressive-disruptive behavior trajectories: Gender differences in maladaptation across life domains. Journal of Youth and Adolescence, 39, 953–966. doi: 10.1007/s10964-009-9442-8.CrossRefPubMedGoogle Scholar
  5. Bradshaw, C. P., Goldweber, A., Fishbein, D., & Greenberg, M. T. (2012). Infusing developmental neuroscience into school-based preventive interventions: Implications and future directions. Journal of Adolescent Health, 51, S41–S47. doi: 10.1016/j.jadohealth.2012.04.020.CrossRefPubMedGoogle Scholar
  6. Brody, G. H., Beach, S. R. H., Philibert, R. A., Chen, Y., & Murry, V. M. (2009). Prevention effects moderate the association of 5-HTTLPR and youth risk behavior initiation: Gene × environment hypotheses tested via a randomized prevention design. Child Development, 80, 645–661. doi: 10.1111/j.1467-8624.2009.01288.x.CrossRefPubMedGoogle Scholar
  7. Canter, L., & Canter, M. (1991). Parents on your side: A comprehensive parent involvement program for teachers. Santa Monica: Lee Center.Google Scholar
  8. Cleynen, I., Mahachie, J. J. M., Henckaerts, L., Van Moerkerche, W., Rutgeerts, P., Van Steen, K., & Vermeire, S. (2010). Molecular reclassification of Crohn's disease by cluster analysis of genetic variants. PloS One, 5, e12952. doi: 10.1371/journal.pone.0012952.PubMedCentralCrossRefPubMedGoogle Scholar
  9. Cole, D. A., Martin, N. C., & Steiger, J. H. (2005). Empirical and conceptual problems with longitudinal trait-state models: Introducing a trait-state-occasion model. Psychological Methods, 10, 3–20. doi: 10.1037/1082-989X.10.1.3.CrossRefPubMedGoogle Scholar
  10. Cole, D. A., Nolen-Hoeksema, S., Girgus, J., & Paul, G. (2006). Stress exposure and stress generation in child and adolescent depression: A latent trait-state-error approach to longitudinal analyses. Journal of Abnormal Psychology, 115, 40–51. doi: 10.1037/0021-843X.115.1.40.CrossRefPubMedGoogle Scholar
  11. DeYoung, C. G., & Clark, R. (2012). The gene in its natural habitat: The importance of gene-trait interactions. Development and Psychopathology, 24, 1307–1318. doi: 10.1017/S0954579412000727.CrossRefPubMedGoogle Scholar
  12. Ensminger, M. E., Forrest, C. B., Riley, A. W., Kang, M., Green, B. F., & Starfield, B. (2000). The validity of measures of socioeconomic status of adolescents. Journal of Adolescent Research, 15, 392–419. doi: 10.1177/0743558400153005.CrossRefGoogle Scholar
  13. Gizer, I. R., Ficks, C., & Waldman, I. D. (2009). Candidate gene studies of ADHD: A meta-analytic review. Human Genetics, 126, 51–90. doi: 10.1007/s00439-009-0694-x.CrossRefPubMedGoogle Scholar
  14. Guillin, O., Diaz, J., Carroll, P., Griffon, N., Schwartz, J. C., & Sokoloff, P. (2001). BDNF controls dopamine D3 receptor expression and triggers behavioral sensitization. Nature, 411, 86–89.CrossRefPubMedGoogle Scholar
  15. Howe, G. W., Beach, S. R. H., & Brody, G. H. (2010). Microtrial methods for translating gene environment dynamics into preventive interventions. Prevention Science, 11, 343–354. doi: 10.1007/s11121-010-0177-2.PubMedCentralCrossRefPubMedGoogle Scholar
  16. Ialongo, N. S., Werthamer, L., Kellam, S. G., Brown, C. H., Wang, S., & Lin, Y. (1999). Proximal impact of two first-grade preventive interventions on the early risk behaviors for later substance abuse, depression, and antisocial behavior. American Journal of Community Psychology, 27, 599–641. doi: 10.1023/A:1022137920532.CrossRefPubMedGoogle Scholar
  17. Ialongo, N., Poduska, J., Werthamer, L., & Kellam, S. (2001). The distal impact of two first grade preventive interventions on conduct problems and disorder in early adolescence. Journal of Emotional and Behavioral Disorders, 9, 146–160. doi: 10.1177/106342660100900301.CrossRefGoogle Scholar
  18. Ialongo, N., Rogosch, F. A., Cicchetti, D., Toth, S. L., Buckley, J., Petras, H., & Neiderhiser, J. (2006). A developmental psychopathology approach to the prevention of mental health disorders. In D. Cicchetti & D. Cohen (Eds.), Developmental psychopathology (Theory and method 2nd ed., Vol. 1, pp. 968–1018). New York: Wiley Press.Google Scholar
  19. Institute of Education Sciences. (2011). The Nation's Report Card: Trial Urban District Assessment Reading 2011. Retrieved from
  20. Institute of Education Sciences. (2012). Fast Facts. Retrieved from
  21. Ito, W., Chehab, M., Thakur, S., Li, J., & Morozov, A. (2011). BDNF-restricted knockout mice as an animal model for aggression. Genes, Brain and Behavior, 10, 365–374. doi: 10.1111/j.1601-183X.2010.00676.x.CrossRefGoogle Scholar
  22. Jo, B. (2002). Model misspecification sensitivity analysis in estimating causal effects of interventions with non-compliance. Statistics in Medicine, 21, 3161–3181. doi: 10.1002/sim.1267.CrossRefPubMedGoogle Scholar
  23. Kellam, S. G., Brown, C. H., Poduska, J. M., Ialongo, N., Wang, W., Toyinbo, P., & Wilcox, H. C. (2008). Effects of a universal classroom behavior management program in first and second grades on young adult behavioral, psychiatric, and social outcomes. Drug and Alcohol Dependence, 95, S5–S28. doi: 10.1016/j.drugalcdep.2008.01.004.PubMedCentralCrossRefPubMedGoogle Scholar
  24. Kenny, D. A., & Zautra, A. (1995). The trait-state-error model for multiwave data. Journal of Consulting and Clinical Psychology, 63, 52–59. doi: 10.1037/0022-006X.63.1.52.Google Scholar
  25. Lasky-Su, J., Faraone, S. V., Lange, C., Tsuang, M. T., Doyle, A. E., Smoller, J. W., & Biederman, J. (2007). A study of how socioeconomic status moderates the relationship between SNPs encompassing BDNF and ADHD symptom counts in ADHD families. Behavior Genetics, 37, 487–497. doi: 10.1007/s10519-006-9136-x.CrossRefPubMedGoogle Scholar
  26. Lee, J., Laurin, N., Crosbie, J., Ickowicz, A., Pathare, T., Malone, M., & Carr, C. L. (2007). Association study of the brain-derived neurotropic factor (BDNF) gene in attention deficit hyperactivity disorder. American Journal of Medical Genetics, 144B, 976–981. doi: 10.1002/ajmg.b.30437.CrossRefPubMedGoogle Scholar
  27. Moffitt, T. E. (2006). Life-course persistent versus adolescent-limited antisocial behavior. In D. Cicchetti & D. Cohen (Eds.), Developmental psychopathology (Risk, disorder, and adaptation 2nd ed., Vol. 3, pp. 570–598). New York: Wiley Press.Google Scholar
  28. Muthén, B. (2001). Second-generation structural equation modeling with a combination of categorical and continuous latent variables: New opportunities for latent class/latent growth modeling. In L. M. Collins & A. Sayer (Eds.), New methods for the analysis of change (pp. 291–322). Washington: American Psychological Association.CrossRefGoogle Scholar
  29. Muthén, L. K., & Muthén, B. O. (1998–2011). Mplus user's guide (7th ed.). Los Angeles, CA: Author.Google Scholar
  30. Muthén, B., & Shedden, K. (1999). Finite mixture modeling with mixture outcomes using the EM algorithm. Biometrics, 55, 463–469. doi: 10.1111/j.0006-341X.1999.00463.x.CrossRefPubMedGoogle Scholar
  31. Oades, R. D., Lasky-Su, J., Christiansen, H., Farone, S. V., Sonuga-Barke, E. J. S., Banaschewski, T., & Asherson, P. (2008). The influence of serotonin and other genes on impulsive behavioral aggression and cognitive impulsivity in children with attention-deficit/hyperactivity disorder (ADHD): Findings from a family-based association test (FBAT) analysis. Behavioral and Brain Functions, 4, 48. doi: 10.1186/1744-9081-4-48.PubMedCentralCrossRefPubMedGoogle Scholar
  32. Olatunji, B. O., & Cole, D. A. (2009). The longitudinal structure of general and specific anxiety dimensions in children: Testing a latent trait-state-occasion model. Psychological Assessment, 21, 412–424. doi: 10.1037/a0016206.CrossRefPubMedGoogle Scholar
  33. Patterson, G. R., Reid, J., & Dishion, T. (1992). A Social Learning Approach: IV. Antisocial Boys. Eugene: Castalia Press.Google Scholar
  34. Perie, M., Grigg, W. S., Donahue, P. L. (2006). The Nation's Report Card: Reading 2005. Retrieved from
  35. Petras, H., Chilcoat, H. D., Leaf, P. J., Ialongo, N. S., & Kellam, S. G. (2004). Utility of TOCA-R scores during the elementary school years in identifying later violence among adolescent males. Journal of the American Academy of Child and Adolescent Psychiatry, 43, 88–96. doi: 10.1097/00004583-200401000-00018.CrossRefPubMedGoogle Scholar
  36. Petras, H., Masyn, K., & Ialongo, N. (2011). The developmental impact of two first grade preventive interventions on aggressive/disruptive behavior in childhood and adolescence: an application of latent transition growth mixture modeling. Prevention Science, 12, 300–313. doi: 10.1007/s11121-011-0216-7.PubMedCentralCrossRefPubMedGoogle Scholar
  37. Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., & Sham, P. C. (2007). PLINK: A tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics, 81, 559–575. doi: 10.1086/519795.PubMedCentralCrossRefPubMedGoogle Scholar
  38. Rutter, M. (1985). Resilience in the face of adversity: Protective factors and resistance to psychiatric disturbance. British Journal of Psychiatry, 147, 598–611. doi: 10.1192/bjp.147.6.598.CrossRefPubMedGoogle Scholar
  39. Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychological Medicine, 7, 611–622. doi: 10.1037//1082-989X.7.2.147.Google Scholar
  40. Spalletta, G., Morris, D. W., Angelucci, F., Rubino, I. A., Spoletini, I., Bria, P., & Corvin, A. P. (2009). BDNF Val66Met polymorphism is associated with aggressive behavior in schizophrenia. European Journal of Psychiatry, 25, 311–313. doi: 10.1016/j.eurpsy.2009.10.008.CrossRefGoogle Scholar
  41. Uhl, G. R., Walther, D., Musci, R., Fisher, C., Anthony, J. C., Storr, C. L., & Rose, J. E. (2012). Smoking quit success genotype score predicts quit success and distinct patterns of developmental involvement with common addictive substances. Molecular Psychiatry. doi: 10.1038/mp.2012.155.PubMedCentralPubMedGoogle Scholar
  42. Wagner, S., Baskaya, O., Dahmen, N., Lieb, K., & Tadić, A. (2010). Modulatory role of the brain-derived neurotrophic factor Val66Met polymorphism on the effects of serious life events on impulsive aggression in borderline personality disorder. Genes, Brain and Behavior, 9, 97–102. doi: 10.1111/j.1601-183X.2009.00539.x.CrossRefGoogle Scholar
  43. Webster-Stratton, C. (1984). Randomized trial of two parent-training programs for families with conduct-disordered children. Journal of Consulting and Clinical Psychology, 52, 666–678. doi: 10.1037//0022-006X.52.4.666.CrossRefPubMedGoogle Scholar
  44. Werthamer-Larsson, L., Kellam, S., & Wheeler, L. (1991). Effect of first-grade classroom environment on shy behavior, aggressive behavior, and concentration problems. American Journal of Community Psychology, 19, 585–602. doi: 10.1007/BF00937993.CrossRefPubMedGoogle Scholar
  45. Wilson, S. J., & Lipsey, M. W. (2007). School-based interventions for aggressive and disruptive behavior: Update of a meta-analysis. American Journal of Preventive Medicine, 33, S130–S143. doi: 10.1016/j.amepre.2007.04.011.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Society for Prevention Research 2013

Authors and Affiliations

  • Rashelle J. Musci
    • 1
    Email author
  • Catherine P. Bradshaw
    • 1
  • Brion Maher
    • 1
  • George R. Uhl
    • 2
  • Sheppard G. Kellam
    • 1
  • Nicholas S. Ialongo
    • 1
  1. 1.Department of Mental HealthJohns Hopkins Bloomberg School of Public HealthBaltimoreUSA
  2. 2.Molecular Neurobiology DivisionNIDA Intramural Research ProgramBaltimoreUSA

Personalised recommendations