Advertisement

Prevention Science

, Volume 15, Issue 5, pp 611–622 | Cite as

An Exponential Decay Model for Mediation

  • Matthew S. FritzEmail author
Article

Abstract

Mediation analysis is often used to investigate mechanisms of change in prevention research. Results finding mediation are strengthened when longitudinal data are used because of the need for temporal precedence. Current longitudinal mediation models have focused mainly on linear change, but many variables in prevention change nonlinearly across time. The most common solution to nonlinearity is to add a quadratic term to the linear model, but this can lead to the use of the quadratic function to explain all nonlinearity, regardless of theory and the characteristics of the variables in the model. The current study describes the problems that arise when quadratic functions are used to describe all nonlinearity and how the use of nonlinear functions, such as exponential decay, address many of these problems. In addition, nonlinear models provide several advantages over polynomial models including usefulness of parameters, parsimony, and generalizability. The effects of using nonlinear functions for mediation analysis are then discussed and a nonlinear growth curve model for mediation is presented. An empirical example using data from a randomized intervention study is then provided to illustrate the estimation and interpretation of the model. Implications, limitations, and future directions are also discussed.

Keywords

Mediation Exponential decay Longitudinal 

Supplementary material

11121_2013_390_MOESM1_ESM.doc (71 kb)
ESM 1 (DOC 71 kb)

References

  1. Bandura, A. (1977). Social learning theory. Englewood Cliffs: Prentice-Hall.Google Scholar
  2. Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51, 1173–1182. doi: 10.1037/0022-3514.51.6.1173.CrossRefPubMedGoogle Scholar
  3. Bauer, D. J., Preacher, K. J., & Gil, K. M. (2006). Conceptualizing and testing random indirect effects and moderated mediation in multilevel models. Psychological Methods, 11, 142–163. doi: 10.1037/1082989X.11.2.142.CrossRefPubMedGoogle Scholar
  4. Blozis, S. A. (2007). On fitting nonlinear latent curve models to multiple variables measured longitudinally. Structural Equation Modeling, 14, 179–201. doi: 10.1080/10705510701293445.CrossRefGoogle Scholar
  5. Browne, M. W. (1993). Structured latent curve models. In C. M. Cuadras & C. R. Rao (Eds.), Multivariate analysis: Future Directions 2 (pp. 171–197). Amsterdam: North-Holland.Google Scholar
  6. Chen, H.-T. (1990). Theory-driven evaluations. Newbury Park, CA: Sage.Google Scholar
  7. Cheong, J., MacKinnon, D. P., & Khoo, S. T. (2003). Investigation of mediational processes using a parallel process latent growth curve modeling. Structural Equation Modeling, 10, 238–262. doi: 10.1207/S15328007SEM1002_5.PubMedCentralCrossRefPubMedGoogle Scholar
  8. Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  9. d’Onofrio, A. (2005). A general framework for modeling tumor-immune system competition and immunotherapy: Mathematical analysis and biomedical inferences. Physica D: Nonlinear Processes, 208, 220–235. doi: 10.1016/j.physd.2005.06.032.CrossRefGoogle Scholar
  10. Davidian, M., & Giltinan, D. M. (1995). Nonlinear models for repeated measurement of data. London: Chapman & Hall.Google Scholar
  11. Fairchild, A. J., & MacKinnon, D. P. (2009). A general model for testing mediation and moderation effects. Prevention Science, 10, 87–99. doi: 10.1007/s11121-008-0109-6.PubMedCentralCrossRefPubMedGoogle Scholar
  12. Fishbein, M., & Azjen, J. (1975). Belief, attitude, intention, and behavior. Reading, MA: Addison-Wesley.Google Scholar
  13. Foorman, B. R., Francis, D. J., Fletcher, J. M., Schatschneider, C., & Mehta, P. D. (1998). The role of instruction in learning to read: Preventing reading failure in at-risk children. Journal of Educational Psychology, 90, 37–55. doi: 10.1037//0022-0663.90.1.37.CrossRefGoogle Scholar
  14. Fritz, M. S., & MacKinnon, D. P. (2007). Required sample size to detect the mediated effect. Psychological Science, 18, 233–239. doi: 10.1111/j.1467-9280.2007.01882.x.PubMedCentralCrossRefPubMedGoogle Scholar
  15. Fritz, M. S., & MacKinnon, D. P. (2009). Extensions of the exponential decay model for mediation. Washington, D.C.: A poster presented at the annual meeting of the Society for Prevention Research.Google Scholar
  16. Fritz, M. S., & MacKinnon, D. P. (2012). Mediation models for developmental data. In B. Laursen, T. Little, & N. Card (Eds.), Handbook of developmental research methods (pp. 291–310). New York: Guilford.Google Scholar
  17. Fritz, M. S., Taylor, A. B., & MacKinnon, D. P. (2012). Explanation of two anomalous results in statistical mediation analysis. Multivariate Behavioral Research, 47, 61–87. doi: 10.1080/00273171.2012.640596.PubMedCentralCrossRefPubMedGoogle Scholar
  18. Gibaldi, M., & Perrier, D. (1982). Pharmacokinetics. New York: Marcel Dekker.Google Scholar
  19. Goldberg, L., MacKinnon, D. P., Elliot, D. L., Moe, E. L., Clarke, G. N., & Cheong, J. (2000). The adolescents training and learning to avoid steroids program. Archives of Pediatric and Adolescent Medicine, 154, 332–338.CrossRefGoogle Scholar
  20. Grimm, K. J., & Ram, N. (2009). Nonlinear growth models in Mplus and SAS. Structural Equation Modeling, 16, 676–701. doi: 10.1080/10705510903206055.PubMedCentralCrossRefPubMedGoogle Scholar
  21. Janz, N. K., & Becker, M. H. (1984). The health belief model: A decade later. Health Education Quarterly, 11, 1–47. doi: 10.1177/109019818401100101.CrossRefPubMedGoogle Scholar
  22. Kenny, D. A., Korchmaros, J. D., & Bolger, N. (2003). Lower level mediation in multilevel models. Psychological Methods, 8, 115–128. doi: 10.1037/1082-989X.8.2.115.CrossRefPubMedGoogle Scholar
  23. Krull, J. L., & MacKinnon, D. P. (2001). Multilevel modeling of individual and group level mediated effects. Multivariate Behavioral Research, 36, 249–277. doi: 10.1207/S15327906MBR3602_06.CrossRefGoogle Scholar
  24. Ma, M., & McClintock, S. (2011). Regression model fitting with quadratic term leads to different conclusion in economic analysis of Washington State smoking ban. Preventing Chronic Disease: Public Health Research, Practice, and Policy, 8, 1–3.Google Scholar
  25. MacKinnon, D. P. (2008). Introduction to statistical mediation analysis. Newark, NJ: Erlbaum.Google Scholar
  26. MacKinnon, D. P., Goldberg, L., Clarke, G. N., Elliot, D. L., Cheong, J., Lapin, A., et al. (2001). Mediating mechanisms in a program to reduce intentions to use anabolic steroids and improve exercise self-efficacy and dietary behavior. Prevention Science, 2, 15–28. doi: 10.1023/A:1010082828000.CrossRefPubMedGoogle Scholar
  27. MacKinnon, D. P., Lockwood, C. M., Hoffman, J. M., West, S. G., & Sheets, V. (2002). A comparison of methods to test mediation and other intervening variable effects. Psychological Methods, 7, 83–103. doi: 10.1037/1082-989X.7.1.83.PubMedCentralCrossRefPubMedGoogle Scholar
  28. MacKinnon, D. P., Lockwood, C. M., & Williams, J. (2004). Confidence limits for the indirect effect: Distribution of the product and resampling methods. Multivariate Behavioral Research, 39, 99–128. doi: 10.1207/s15327906mbr3901_4.PubMedCentralCrossRefPubMedGoogle Scholar
  29. Muthen, L. K., & Muthen, B. O. (2012). Mplus User's Guide (6th ed.). Los Angeles, CA: Muthen & Muthen.Google Scholar
  30. Pinheiro, J. C., & Bates, D. M. (2000). Mixed-effects models in S and S-Plus. New York: Springer.CrossRefGoogle Scholar
  31. Preacher, K. J., Zyphur, M. J., & Zhang, Z. (2010). A general multilevel SEM framework for assessing multilevel mediation. Psychological Methods, 15, 209–233. doi: 10.1037/a0020141.CrossRefPubMedGoogle Scholar
  32. R Development Core Team. (2012). R v. 2.13.0 [Computer Software]. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
  33. Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and data analysis method (2nd ed.). Thousand Oaks, CA: Sage.Google Scholar
  34. SAS Institute Inc. (2012). SAS v. 9.2 [Computer Software]. Cary, NC: SAS Institute, Inc.Google Scholar
  35. Shrout, P. E., & Bolger, N. (2002). Mediation in experimental and nonexperimental studies: New procedures and recommendations. Psychological Methods, 7, 422–445. doi: 10.1037/1082-989X.7.4.422.CrossRefPubMedGoogle Scholar
  36. Wall, M. I., Carlson, S. A., Stein, A. D., Lee, S. M., & Fulton, J. E. (2011). Trends by age in youth physical activity: Youth media campaign longitudinal survey. Medicine & Science in Sports & Exercise, 43, 2140–2147. doi: 10.1249/MSS.0b013e31821f561a.CrossRefGoogle Scholar
  37. Zhang, H., Zhang, J., Li, P., Small, M., & Wang, B. (2011). Risk estimation of infectious diseases determines the effectiveness of the control strategy. Physica D: Nonlinear Processes, 240, 943–948. doi: 10.1016/j.physd.2011.02.001.CrossRefGoogle Scholar

Copyright information

© Society for Prevention Research 2013

Authors and Affiliations

  1. 1.Department of PsychologyVirginia Polytechnic Institute and State University (Virginia Tech)BlacksburgUSA

Personalised recommendations