Skip to main content
Log in

Meta-Analysis and Subgroups

  • Published:
Prevention Science Aims and scope Submit manuscript


Subgroup analysis is the process of comparing a treatment effect for two or more variants of an intervention—to ask, for example, if an intervention’s impact is affected by the setting (school versus community), by the delivery agent (outside facilitator versus regular classroom teacher), by the quality of delivery, or if the long-term effect differs from the short-term effect. While large-scale studies often employ subgroup analyses, these analyses cannot generally be performed for small-scale studies, since these typically include a homogeneous population and only one variant of the intervention. This limitation can be bypassed by using meta-analysis. Meta-analysis allows the researcher to compare the treatment effect in different subgroups, even if these subgroups appear in separate studies. We discuss several statistical issues related to this procedure, including the selection of a statistical model and statistical power for the comparison. To illustrate these points, we use the example of a meta-analysis of obesity prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others


  • Bonett, D. G. (2008). Meta-analytic interval estimation for bivariate correlations. Psychological Methods, 13, 173–189.

    Article  PubMed  Google Scholar 

  • Bonett, D. G. (2009). Meta-analytic interval estimation for standardized and unstandardized mean differences. Psychological Methods, 14, 225–238.

    Article  PubMed  Google Scholar 

  • Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to meta-analysis. Chichester, UK: Wiley.

  • Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2010). A basic introduction to fixed-effect and random-effects models for meta-analysis. Research Synthesis Methods, 1, 97–111.

    Article  Google Scholar 

  • Cooper, H. M., Hedges, L. V., & Valentine, J. (2009). The handbook of research synthesis and meta-analysis. New York: Russell Sage Foundation.

    Google Scholar 

  • Hedges, L. V., & Olkin, I. (1985). Statistical methods for meta-analysis. New York: Academic.

    Google Scholar 

  • Hedges, L. V., & Pigott, T. D. (2001). The power of statistical tests in meta-analysis. Psychological Methods, 6, 203–217.

    Article  PubMed  CAS  Google Scholar 

  • Hedges, L. V., & Pigott, T. D. (2004). The power of statistical tests for moderators in meta-analysis. Psychological Methods, 9, 426–445.

    Article  PubMed  Google Scholar 

  • Lindgarde, F. (2000). The effect of orlistat on body weight and coronary heart disease risk profile in obese patients: The Swedish Multimorbidity Study. Journal of Internal Medicine, 248, 245–254.

    Google Scholar 

  • Lipsey, M. W., & Wilson, D. B. (2001). Practical meta-analysis. Thousand Oaks, CA: Sage Publications.

  • Padwal, R., Li, S. K., & Lau, D. C. W. (2003a). Long-term pharmacotherapy for overweight and obesity: A systematic review and meta-analysis of randomized controlled trials. International Journal of Obesity, 27, 1437–1446.

    Article  CAS  Google Scholar 

  • Padwal, R. S., Rucker, D., Li, S. K., Curioni, C., Lau, D. C. W. (2003) Long-term pharmacotherapy for obesity and overweight. Cochrane Database of Systematic Reviews Issue 4. Art. No.: CD004094. doi:10.1002/14651858.CD004094.pub2.

  • Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and data analysis methods (2nd ed.). Newbury Park, CA: Sage.

Download references


The ideas expressed in this paper reflect the many discussions that took place among ourselves, Larry Hedges, and Hannah Rothstein while we were working on the text “Introduction to Meta-Analysis” and on the computer program “Comprehensive Meta-Analysis.” We are grateful for Larry’s and Hannah’s many insights, their generosity, and their friendship. Dr. Borenstein was funded in part by the following grants from the National Institute on Drug Abuse: “Forest Plots for Meta-Analysis” (DA019280) under the direction of Dr. Thomas Hilton, “Power Analysis for Meta-Analysis” (DA022799), and “Power Analysis for Cluster Randomized Trials” (DA025366) under the direction of Dr. Augusto (Augie) Diana. Prof. Higgins was funded in part by Grant U105285807 from the UK Medical Research Council.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Michael Borenstein.

Electronic supplementary material

Below is the link to the electronic supplementary material.


(DOCX 125 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borenstein, M., Higgins, J.P.T. Meta-Analysis and Subgroups. Prev Sci 14, 134–143 (2013).

Download citation

  • Published:

  • Issue Date:

  • DOI: