Skip to main content

Identifying a High-Risk Cohort in a Complex and Dynamic Risk Environment: Out-of-bounds Skiing—An Example from Avalanche Safety

Abstract

The development of effective prevention initiatives requires a detailed understanding of the characteristics and needs of the target audience. To properly identify at-risk individuals, it is crucial to clearly delineate risky from acceptable behavior. Whereas health behavior campaigns commonly use single conditions (e.g., lack of condom use) to identify high-risk cohorts, many risk behaviors are more complex and context dependent, rendering a single condition approach inadequate. Out-of-bounds skiing, an activity associated with voluntary exposure to avalanche hazard, is an example of such a multifaceted risk-taking activity. Using a dataset from an extensive online survey on out-of-bounds skiing, we present an innovative approach for identifying at-risk individuals in complex risk environments. Based on a risk management framework, we first examine risk-taking preferences of out-of-bounds skiers with respect to exposure and preparedness—the two main dimensions of risk management—separately. Our approach builds on existing person-centered research and uses Latent Class Analysis to assign survey participants to mutually exclusive behavioral classes on these two dimensions. Discrete Choice Experiments are introduced as a useful method for examining exposure preferences in the context of variable external conditions. The two class designations are then combined using a risk matrix to assign overall risk levels to each survey participant. The present approach complements existing person-centered prevention research on the antecedents of risk-taking by offering a process-oriented method for examining behavioral patterns with respect to the activity itself. Together, the two approaches can offer a much richer perspective for informing the design of effective prevention initiatives.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Notes

  1. 1.

    For simplicity, we use the terms ‘skier’ or ‘skiing’ to include snowboarders and snowboarding as well.

References

  1. Adamowicz, W. L., Boxall, P. C., Williams, M., & Louviere, J. J. (1998). Stated preference approaches for measuring passive use values: Choice experiments and contingent valuation. American Journal of Agricultural Economics, 80, 64–75.

    Article  Google Scholar 

  2. Agrawal, A., Lynskey, M. T., Madden, P. A. F., Bucholz, K. K., & Heath, A. C. (2007). A latent class analysis of illicit drug abuse/dependence: Results from the National Epidemiological Survey on Alcohol and Related Conditions. Addiction, 102, 94–104.

    PubMed  Article  Google Scholar 

  3. Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716–723.

    Article  Google Scholar 

  4. Bergman, L. R., & Magnusson, D. (1997). A person-oriented approach in research on developmental psychopathology. Development and Psychopathology, 9, 291–319.

    PubMed  Article  CAS  Google Scholar 

  5. Bergman, L. R., Magnusson, D., & El-Khouri, B. (2003). Studying individual development in an interindividual context: A person-oriented approach. Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  6. Bouter, L. M., Knipschild, P. G., Feij, J. A., & Volovics, A. (1988). Sensation seeking and injury in downhill skiing. Personality and Individual Differences, 9, 667–673.

    Article  Google Scholar 

  7. Boxall, P. C., & Adamowicz, W. L. (2002). Understanding heterogeneous preferences in random utility models: A latent class approach. Environmental and Resource Economics, 23, 421–446.

    Article  Google Scholar 

  8. Canadian Standards Association. (1997). Risk management: Guideline for decision-makers - a national standard of Canada (No. CAN/CSA-Q850-97). Ottawa: Canadian Standards Association.

    Google Scholar 

  9. Chung, Y.-S., & Wong, J.-T. (2011). Beyond general behavioral theories: Structural discrepancy in young motorcyclist’s risky driving behavior and its policy implications. Accident Analysis & Prevention. doi:10.1016/j.aap.2011.04.021

  10. Chung, T., Maisto, S. A., Cornelius, J. R., & Martin, C. S. (2004). Adolescents’ alcohol and drug use trajectories in the year following treatment. Journal of Studies on Alcohol, 65, 105–114.

    PubMed  Google Scholar 

  11. Coffman, D., Patrick, M., Palen, L., Rhoades, B., & Ventura, A. (2007). Why do high school seniors drink? Implications for a targeted approach to intervention. Prevention Science, 8, 241–248.

    PubMed  Article  Google Scholar 

  12. Colder, C. R., Campbell, R. T., Ruel, E., Richardson, J. L., & Flay, B. R. (2008). A finite mixture model of growth trajectories of adolescent alcohol use: Predictors and consequences. Journal of Consulting and Clinical Psychology, 70, 976–985.

    Article  Google Scholar 

  13. Collins, L. M., & Lanza, S. T. (2010). Latent class and latent transition analysis: With applications in the social, behavioral, and health sciences. Hoboken, NJ: Wiley.

  14. Collins, L. M., Murphy, S. A., & Bierman, K. L. (2004). A conceptual framework for adaptive preventive interventions. Prevention Science, 5, 185–196.

    PubMed  Article  Google Scholar 

  15. Cronbach, L. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16, 297–334.

    Article  Google Scholar 

  16. Croon, M. (2002). Ordering the classes. In A. L. McCutcheon & J. A. Hagenaars (Eds.), Advances in latent class models (pp. 137–162). New York: Cambridge University Press.

    Chapter  Google Scholar 

  17. Dillman, D. A. (2007). Mail and internet surveys: The tailored design method (2nd ed.). Hoboken, NJ: Wiley.

    Google Scholar 

  18. Donohew, R. L., Zimmerman, R., Cupp, P. S., Novak, S., Colon, S., & Abell, R. (2000). Sensation seeking, impulsive decision-making, and risky sex: Implications for risk-taking and design of interventions. Personality and Individual Differences, 28, 1079–1091.

    Article  Google Scholar 

  19. Glanz, K., Yaroch, A. L., Dancel, M., Saraiya, M., Crane, L. A., Buller, D. B., et al. (2008). Measures of sun exposure and sun protection practices for behavioral and epidemiologic research. Archives of Dermatology, 144, 217–222.

    PubMed  Article  Google Scholar 

  20. Goma-i-Freixanet, M. (2004). Sensation seeking and participation in physical risk sports. In R. Stelmack (Ed.), On the psychobiology or personality: Essays in honour of Marvin Zuckeman (pp. 185–201). New York: Elsevier.

    Google Scholar 

  21. Goodman, L. A. (1974). Exploratory latent structure analysis using both identifiable and unidentifiable models. Biometrika, 61, 215–231.

    Article  Google Scholar 

  22. Grijalva, T. C., Berrens, R. P., Bohara, A. K., & Shaw, W. D. (2002). Testing the validity of contingent behavior trip responses. American Journal of Agricultural Economics, 84, 401–414.

    Article  Google Scholar 

  23. Gunn, M. (2010). Out-of-bounds skiers and avalanche risk: High-risk cohort identification and characterisation (Masters thesis). Burnaby, BC: Simon Fraser University.

    Google Scholar 

  24. Haegeli, P., Haider, W., Longland, M., & Beardmore, B. (2010). Amateur decision-making in avalanche terrain with and without a decision aid - a stated choice survey. Natural Hazards, 52, 185–209.

    Article  Google Scholar 

  25. Haider, W. (2002). Stated preference and choice models—A versatile alternative to traditional recreation research. Paper presented at the International Conference on Monitoring and Management of Visitor Flows in Recreational and Protected Areas, Vienna, Austria.

  26. Hausman, J., & McFadden, D. (1984). Specification tests for the multinomial Logit model. Econometrica, 52, 1219–1240.

    Article  Google Scholar 

  27. Hoyle, R. H., Stephenson, M. T., Palmgreen, P., Lorch, E. P., & Donohew, R. L. (2002). Reliability and validity of a brief measure of sensation. Personality and Individual Differences, 32, 401–414.

    Article  Google Scholar 

  28. International Commission for Alpine Rescue. (2004–2010). People rescued from snow avalanches, alive or dead 2004/05 to 2009/10, from http://www.ikar-cisa.org.

  29. Jonah, B. A., Thiessen, R., & Au-Yeung, E. (2001). Sensation seeking, risky driving and behavioral adaptation. Accident Analysis and Prevention, 33, 679–684.

    PubMed  Article  CAS  Google Scholar 

  30. Langeheine, R., Pannekoek, J., & van de Pol, F. (1996). Bootstrapping goodness-of-fit measures in categorical data analysis. Sociological Methods and Research, 24, 492–516.

    Article  Google Scholar 

  31. Lanza, S. T., & Rhoades, B. (2011). Latent class analysis: An alternative perspective on subgroup analysis in prevention and treatment. Prevention Science. doi:10.1007/s11121-011-0201-1

  32. Larimer, M. E., & Cronce, J. M. (2007). Identification, prevention, and treatment revisited: Individual-focused college drinking prevention strategies 1999–2006. Addictive Behaviors, 32, 2439–2468.

    PubMed  Article  Google Scholar 

  33. Laska, M., Pasch, K., Lust, K., Story, M., & Ehlinger, E. (2009). Latent class analysis of lifestyle characteristics and health risk behaviors among college youth. Prevention Science, 10, 376–386.

    PubMed  Article  Google Scholar 

  34. Lazarsfeld, P. F., & Henry, N. W. (1968). Latent structure analysis. New York: Houghton Mifflin.

    Google Scholar 

  35. List, J. A., & Gallet, C. A. (2001). What experimental protocol influence disparities between actual and hypothetical stated values? Environmental and Resource Economics, 20, 241–254.

    Article  Google Scholar 

  36. Louviere, J. J., Hensher, D. A., & Swait, J. D. (2000). Stated choice methods: Analysis and application. New York: Cambridge University Press.

    Book  Google Scholar 

  37. Lundgren, R. E., & McMakin, A. H. (2009). Risk communication: A handbook for communicating environmental, safety, and health risks (4th ed.). Hoboken, NJ: Wiley.

    Google Scholar 

  38. McClung, D. M. (2002). The elements of applied avalanche forecasting - Part I: The human issues. Natural Hazards, 25, 111–129.

    Article  Google Scholar 

  39. McFadden, D. (1974). Conditional logit analysis of qualitative choice behaviour. In P. Zarembka (Ed.), Frontiers in econometrics (pp. 105–142). New York: Academic Press.

    Google Scholar 

  40. Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461–464.

    Article  Google Scholar 

  41. Schweizer, J., Kronholm, K., Jamieson, J. B., & Birkeland, K. W. (2008). Review of spatial variability of snowpack properties and its importance for avalanche formation. Cold Regions Science and Technology, 51, 253–272.

    Article  Google Scholar 

  42. Slanger, E., & Rudestam, K. E. (1997). Motivation and disinhibition in high risk sports: Sensation seeking and self-efficacy. Journal of Research in Personality, 31, 355–374.

    Article  Google Scholar 

  43. Statham, G., Haegeli, P., Birkeland, K. W., Greene, E., Israelson, C., Tremper, B., et al. (2010). The North American public avalanche danger scale. Paper presented at the International Snow Science Workshop, Lake Tahoe, CA.

  44. Syvertsen, A., Cleveland, M., Gayles, J., Tibbits, M., & Faulk, M. (2010). Profiles of protection from substance use among adolescents. Prevention Science, 11, 185–196.

    PubMed  Article  Google Scholar 

  45. Train, K. (2003). Discrete choice methods with simulation. New York: Cambridge University Press.

    Book  Google Scholar 

  46. Tremper, B. (2008). Staying alive in avalanche terrain (2nd ed.). Seattle, WA: The Mountaineers.

    Google Scholar 

  47. UNISDR (2009). UNISDR Terminology on Disaster Risk Reduction. Retrieved Jan. 22, 2009, from http://www.unisdr.org/eng/library/lib-terminology-eng.htm.

  48. Vermunt, J. K., & Magidson, J. (2002). Latent class cluster analysis. In A. L. McCutcheon & J. A. Hagenaars (Eds.), Advances in latent class models (pp. 89–106). New York: Cambridge University Press.

    Chapter  Google Scholar 

  49. Vermunt, J. K., & Magidson, J. (2005a). Latent gold 4.0: User’s guide. Belmont, MA: Statistical Innovations Inc.

    Google Scholar 

  50. Vermunt, J. K., & Magidson, J. (2005b). Latent GOLD choice 4.0 user’s manual. Belmont MA: Statistical Innovations Inc.

    Google Scholar 

  51. Vermunt, J. K., & Magidson, J. (2008). LG-syntax user’s guide: Manual for latent GOLD 4.5 syntax module. Belmont, MA: Statistical Innovations Inc.

    Google Scholar 

  52. Weinstein, N. D., & Sandman, P. M. (2002). The precaution adoption process model. In K. Glanz, B. K. Rimer & F. M. Lewis (Eds.), Health behavior and health education. San Francisco: Jossey-Bass.

  53. Whitehead, J. C. (2005). Environmental risk and averting behavior: Predictive validity of jointly estimated revealed and stated behavior data. Environmental and Resource Economics, 32, 301–316.

    Article  Google Scholar 

  54. Zuckerman, M. (2006). Sensation seeking and risky behaviour. Washington, DC: American Psychological Association.

    Google Scholar 

Download references

Acknowledgements

This project was part of the ADFAR2 initiative of the Canadian Avalanche Centre, which was funded by the Government of Canada through the Search and Rescue New Initiatives Fund (SAR-NIF). We would like to thank the anonymous reviewers and the editor David MacKinnon for their constructive comments on earlier drafts of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pascal Haegeli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 33 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Haegeli, P., Gunn, M. & Haider, W. Identifying a High-Risk Cohort in a Complex and Dynamic Risk Environment: Out-of-bounds Skiing—An Example from Avalanche Safety. Prev Sci 13, 562–573 (2012). https://doi.org/10.1007/s11121-012-0282-5

Download citation

Keywords

  • High-risk cohort identification
  • Avalanche safety
  • Out-of-bounds skiing
  • Visual discrete choice experiment
  • Latent class analysis
  • Person-centered research