Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions. Thousand Oaks, CA: Sage.
Google Scholar
Barber, J. S., Murphy, S. A., & Verbitsky, N. (2004). Adjusting for time-varying confounding in survival analysis. Sociological Methodology, 34, 163–192.
Article
Google Scholar
Bray, B. C., Almirall, D., Zimmerman, R. S., Lynam, D., & Murphy, S. A. (2006). Assessing the total effect of time-varying predictors in prevention research. Prevention Science, 7, 1–17.
PubMed
Article
Google Scholar
Brumback, B. A., Hernan, M. A., Hanseuse, S. J. P. S., & Robins, J. M. (2004). Sensitivity analysis for unmeasured confounding assuming a marginal structural model for repeated measures. Statistics in Medicine, 23, 749–767.
PubMed
Article
Google Scholar
Caldwell, L. L., Smith, E., Flisher, A. J., Wegner, L., Vergnani, T., Mathews, C., & Mpofu, E. (2004). HealthWise South Africa: Development of a life skills curriculum for young adults. World Leisure Journal, 46, 4–17.
Article
Google Scholar
Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Mahwah, NJ: Lawrence Erlbaum Associates.
Google Scholar
Cole, S. R., & Hernan, M. A. (2008). Constructing inverse probability weights for marginal structural models. American Journal of Epidemiology, 168, 656–664.
PubMed
Article
Google Scholar
Hirano, K., & Imbens, G. W. (2004). The propensity score with continuous treatments. In A. Gelman & X.-L. Meng (Eds.), Applied Bayesian modeling and causal inference from incomplete-data perspectives (pp. 73–84). Hoboken, NJ: Wiley.
Google Scholar
Hong, G., & Raudenbush, S. W. (2005). Effects of kindergarten retention policy on children’s cognitive growth in reading and mathematics. Educational Evaluation and Policy Analysis, 27, 205–224.
Article
Google Scholar
Hong, G., & Raudenbush, S. W. (2006). Evaluating kindergarten retention policy: A case study of causal inference for multi-level observational data. Journal of the American Statistical Association, 101, 901–910.
Article
CAS
Google Scholar
Imai, K., & van Dyk, D. A. (2004). Causal inference with general treatment regimes: Generalizing the propensity score. Journal of the American Statistical Association, 99, 854–866.
Article
Google Scholar
Imbens, G. W. (2000). The role of the propensity score in estimating dose-response functions. Biometrika, 83, 706–710.
Article
Google Scholar
Little, R. J. A., & Rubin, D. B. (2002). Statistical analysis with missing data. Hoboken, NJ: Wiley.
Google Scholar
Lumley, T. (2010). Survey: Analysis of complex survey samples [software manual]. Retrieved from http://CRAN.R-project.org/package=survey (R package version 3.22-1).
MacKinnon, D. P. (2008). Introduction to statistical mediation analysis. Mahwah, NJ: Lawrence Erlbaum Associates.
Google Scholar
Robins, J. M., Hernan, M. A., & Brumback, B. A. (2000). Marginal structural models and causal inference in epidemiology. Epidemiology, 11, 550–560.
PubMed
Article
CAS
Google Scholar
Rosenbaum, P. R., & Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika, 70, 41–55.
Article
Google Scholar
Rosenbaum, P. R., & Rubin, D. B. (1984). Reducing bias in observational studies using subclassification on the propensity score. Journal of the American Statistical Association, 79, 516–524.
Article
Google Scholar
Rosenbaum, P. R., & Rubin, D. B. (1985). Constructing a control group using multivariate matched sampling methods that incorporate the propensity score. The American Statistician, 39, 33–38.
Google Scholar
Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology, 66, 688–701.
Article
Google Scholar
Rubin, D. B. (2005). Causal inference using potential outcomes: Design, modeling, decisions. Journal of the American Statistical Association, 100, 322–331.
Article
CAS
Google Scholar
Schafer, J. L. (1997). Analysis of incomplete multivariate data. London, England: Chapman & Hall.
Book
Google Scholar
Schafer, J. L., & Kang, J. D. Y. (2008). Average causal effects from non-randomized studies: A practical guide and simulated example. Psychological Methods, 13, 279–313.
PubMed
Article
Google Scholar
van der Wal, W. M., Prins, M., Lumbreras, B., & Geskus, R. B. (2009). A simple g-computation algorithm to quantify the causal effect of a secondary illness on the progression of a chronic disease. Statistics in Medicine, 28, 2325–2337.
PubMed
Article
Google Scholar