Skip to main content

Introducing the At-Risk Average Causal Effect with Application to HealthWise South Africa

Abstract

Researchers often hypothesize that a causal variable, whether randomly assigned or not, has an effect on an outcome behavior and that this effect may vary across levels of initial risk of engaging in the outcome behavior. In this paper, we propose a method for quantifying initial risk status. We then illustrate the use of this risk-status variable as a moderator of the causal effect of leisure boredom, a non-randomized continuous variable, on cigarette smoking initiation. The data come from the HealthWise South Africa study. We define the causal effects using marginal structural models and estimate the causal effects using inverse propensity weights. Indeed, we found leisure boredom had a differential causal effect on smoking initiation across different risk statuses. The proposed method may be useful for prevention scientists evaluating causal effects that may vary across levels of initial risk.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions. Thousand Oaks, CA: Sage.

    Google Scholar 

  • Barber, J. S., Murphy, S. A., & Verbitsky, N. (2004). Adjusting for time-varying confounding in survival analysis. Sociological Methodology, 34, 163–192.

    Article  Google Scholar 

  • Bray, B. C., Almirall, D., Zimmerman, R. S., Lynam, D., & Murphy, S. A. (2006). Assessing the total effect of time-varying predictors in prevention research. Prevention Science, 7, 1–17.

    PubMed  Article  Google Scholar 

  • Brumback, B. A., Hernan, M. A., Hanseuse, S. J. P. S., & Robins, J. M. (2004). Sensitivity analysis for unmeasured confounding assuming a marginal structural model for repeated measures. Statistics in Medicine, 23, 749–767.

    PubMed  Article  Google Scholar 

  • Caldwell, L. L., Smith, E., Flisher, A. J., Wegner, L., Vergnani, T., Mathews, C., & Mpofu, E. (2004). HealthWise South Africa: Development of a life skills curriculum for young adults. World Leisure Journal, 46, 4–17.

    Article  Google Scholar 

  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Cole, S. R., & Hernan, M. A. (2008). Constructing inverse probability weights for marginal structural models. American Journal of Epidemiology, 168, 656–664.

    PubMed  Article  Google Scholar 

  • Hirano, K., & Imbens, G. W. (2004). The propensity score with continuous treatments. In A. Gelman & X.-L. Meng (Eds.), Applied Bayesian modeling and causal inference from incomplete-data perspectives (pp. 73–84). Hoboken, NJ: Wiley.

    Google Scholar 

  • Hong, G., & Raudenbush, S. W. (2005). Effects of kindergarten retention policy on children’s cognitive growth in reading and mathematics. Educational Evaluation and Policy Analysis, 27, 205–224.

    Article  Google Scholar 

  • Hong, G., & Raudenbush, S. W. (2006). Evaluating kindergarten retention policy: A case study of causal inference for multi-level observational data. Journal of the American Statistical Association, 101, 901–910.

    Article  CAS  Google Scholar 

  • Imai, K., & van Dyk, D. A. (2004). Causal inference with general treatment regimes: Generalizing the propensity score. Journal of the American Statistical Association, 99, 854–866.

    Article  Google Scholar 

  • Imbens, G. W. (2000). The role of the propensity score in estimating dose-response functions. Biometrika, 83, 706–710.

    Article  Google Scholar 

  • Little, R. J. A., & Rubin, D. B. (2002). Statistical analysis with missing data. Hoboken, NJ: Wiley.

    Google Scholar 

  • Lumley, T. (2010). Survey: Analysis of complex survey samples [software manual]. Retrieved from http://CRAN.R-project.org/package=survey (R package version 3.22-1).

  • MacKinnon, D. P. (2008). Introduction to statistical mediation analysis. Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Robins, J. M., Hernan, M. A., & Brumback, B. A. (2000). Marginal structural models and causal inference in epidemiology. Epidemiology, 11, 550–560.

    PubMed  Article  CAS  Google Scholar 

  • Rosenbaum, P. R., & Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika, 70, 41–55.

    Article  Google Scholar 

  • Rosenbaum, P. R., & Rubin, D. B. (1984). Reducing bias in observational studies using subclassification on the propensity score. Journal of the American Statistical Association, 79, 516–524.

    Article  Google Scholar 

  • Rosenbaum, P. R., & Rubin, D. B. (1985). Constructing a control group using multivariate matched sampling methods that incorporate the propensity score. The American Statistician, 39, 33–38.

    Google Scholar 

  • Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology, 66, 688–701.

    Article  Google Scholar 

  • Rubin, D. B. (2005). Causal inference using potential outcomes: Design, modeling, decisions. Journal of the American Statistical Association, 100, 322–331.

    Article  CAS  Google Scholar 

  • Schafer, J. L. (1997). Analysis of incomplete multivariate data. London, England: Chapman & Hall.

    Book  Google Scholar 

  • Schafer, J. L., & Kang, J. D. Y. (2008). Average causal effects from non-randomized studies: A practical guide and simulated example. Psychological Methods, 13, 279–313.

    PubMed  Article  Google Scholar 

  • van der Wal, W. M., Prins, M., Lumbreras, B., & Geskus, R. B. (2009). A simple g-computation algorithm to quantify the causal effect of a secondary illness on the progression of a chronic disease. Statistics in Medicine, 28, 2325–2337.

    PubMed  Article  Google Scholar 

Download references

Authors’ note

Preparation of this article was supported by NIDA Center Grant P50 DA100075, NIDA R03 DA026543, and NIDDK 5R21DK082858-02. HealthWise was supported by NIDA grant R01 DA01749. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute on Drug Abuse (NIDA), the National Institute on Diabetes and Digestive and Kidney Diseases (NIDDK), or the National Institutes of Health (NIH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donna L. Coffman.

Appendix

Appendix

R Code

The data set is read into R and is called “dat.” The variable c.bored2 is the mean-centered leisure boredom variable and smoke1, smoke2, and smoke3 are the lifetime smoking variables at baseline, 6 months, and 1 year, respectively.

figure a

SAS Code

The data set is read into SAS. It is originally called “leisure” and is in the library “atrisk.” The variable cbored2 is the mean-centered leisure boredom variable and smoke1, smoke2, and smoke3 are the lifetime smoking variables at baseline, 6 months, and 1 year, respectively.

figure bfigure b

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Coffman, D.L., Caldwell, L.L. & Smith, E.A. Introducing the At-Risk Average Causal Effect with Application to HealthWise South Africa. Prev Sci 13, 437–447 (2012). https://doi.org/10.1007/s11121-011-0271-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11121-011-0271-0

Keywords

  • Causal inference
  • Marginal Structural Models
  • Leisure boredom
  • Cigarette smoking initiation