Abstract
Photo-induced triplet states in the thylakoid membranes isolated from the cyanobacterium Acaryocholoris marina, that harbours Chlorophyll (Chl) d as its main chromophore, have been investigated by Optically Detected Magnetic Resonance (ODMR) and time-resolved Electron Paramagnetic Resonance (TR-EPR). Thylakoids were subjected to treatments aimed at poising the redox state of the terminal electron transfer acceptors and donors of Photosystem II (PSII) and Photosystem I (PSI), respectively. Under ambient redox conditions, four Chl d triplet populations were detectable, identifiable by their characteristic zero field splitting parameters, after deconvolution of the Fluorescence Detected Magnetic Resonance (FDMR) spectra. Illumination in the presence of the redox mediator N,N,N′,N′-Tetramethyl-p-phenylenediamine (TMPD) and sodium ascorbate at room temperature led to a redistribution of the triplet populations, with T3 (|D|= 0.0245 cm−1, |E|= 0.0042 cm−1) becoming dominant and increasing in intensity with respect to untreated samples. A second triplet population (T4, |D|= 0.0248 cm−1, |E|= 0.0040 cm−1) having an intensity ratio of about 1:4 with respect to T3 was also detectable after illumination in the presence of TMPD and ascorbate. The microwave-induced Triplet-minus-Singlet spectrum acquired at the maximum of the |D|–|E| transition (610 MHz) displays a broad minimum at 740 nm, accompanied by a set of complex spectral features that overall resemble, despite showing further fine spectral structure, the previously reported Triplet-minus-Singlet spectrum attributed to the recombination triplet of PSI reaction centre, \({}^{3}P_{740}^{{}}\) [Schenderlein M, Çetin M, Barber J, et al. Spectroscopic studies of the chlorophyll d containing photosystem I from the cyanobacterium Acaryochloris marina. Biochim Biophys Acta 1777:1400–1408]. However, TR-EPR experiments indicate that this triplet displays an eaeaea electron spin polarisation pattern which is characteristic of triplet sublevels populated by intersystem crossing rather than recombination, for which an aeeaae polarisation pattern is expected instead. It is proposed that the observed triplet, which leads to the bleaching of the P740 singlet state, sits on the PSI reaction centre.
Similar content being viewed by others
Data Availability
Data sets generated during the current study are available from the corresponding author on reasonable request.
References
Agostini A, Palm DM, Paulsen H, Carbonera D (2018) Optically detected magnetic resonance of chlorophyll triplet states in water-soluble chlorophyll proteins from lepidium virginicum: evidence for excitonic interaction among the four pigments. J Phys Chem B 122:6156–6163. https://doi.org/10.1021/acs.jpcb.8b01906
Akiyama M, Miyashita H, Kise H, Watanabe T, Mimuro M, Miyachi S, Kobayashi M (2002) Quest for minor but key chlorophyll molecules in photosynthetic reaction centers – unusual pigment composition in the reaction centers of the chlorophyll d-dominated cyanobacterium Acaryochloris marina. Photosynth Res 74:97–107. https://doi.org/10.1023/A:1020915506409
Allakhverdiev SI, Kreslavski VD, Zharmukhamedov SK, Voloshin RA, Korol’kova DV, Tom T, Shen JR (2016) Chlorophylls d and f and their role in primary photosynthetic processes of cyanobacteria. Biochemistry [moscow] 8:201–212. https://doi.org/10.1134/S0006297916030020
Allakhverdiev SI, Tomo T, Shimada Y et al (2010) Redox potential of pheophytin a in photosystem II of two cyanobacteria having the different special pair chlorophylls. Proc Natl Acad Sci 107:3924–3929. https://doi.org/10.1073/pnas.0913460107
Allakhverdiev SI, Tsuchiya T, Watabe K, Kojima A, Los DA, Tomo T, Klimov VV, Mimuro M (2011) Redox potentials of primary electron acceptor quinone molecule (QA)- and conserved energetics of photosystem II in cyanobacteria with chlorophyll a and chlorophyll d. Proc Natl Acad Sci U S A. 108:8054–8058. https://doi.org/10.1073/pnas.1100173108
Bailleul B, Johnson X, Finazzi G et al (2008) The thermodynamics and kinetics of electron transfer between cytochrome b6f and photosystem I in the chlorophyll d-dominated cyanobacterium, Acaryochloris marina. J Biol Chem 283:25218–25226. https://doi.org/10.1074/jbc.M803047200
Bowers PG, Porter G (1967) Quantum yields of triplet formation in solutions of chlorophyll. Proc R Soc Lond A Math Phys Sci 296:435–441
Brettel K (1997) Electron transfer and arrangement of the redox cofactors in photosystem I. Biochim Biophys Acta - Bioenerg 1318:322–373. https://doi.org/10.1016/S0005-2728(96)00112-0
Budil DE, Thurnauer MC (1991) The chlorophyll triplet state as a probe of structure and function in photosynthesis. Biochim Biophys Acta - Bioenerg 1057:1–41. https://doi.org/10.1016/S0005-2728(05)80081-7
Carbonera D (2009) Optically detected magnetic resonance (ODMR) of photoexcited triplet states. Photosynth Res 102:403–414. https://doi.org/10.1007/s11120-009-9407-5
Carbonera D, Collareta P, Giacometti G (1997) The P700 triplet state in an intact environment detected by ODMR. A well resolved triplet minus singlet spectrum. Biochim Biophys Acta - Bioenerg 1322:115–128. https://doi.org/10.1016/S0005-2728(97)00068-6
Carbonera D, Giacometti G, Agostini G (1992) FDMR of carotenoid and chlorophyll triplets in light-harvesting complex LHCII of spinach. Appl Magn Reson 3:859–872. https://doi.org/10.1007/BF03260117
Carbonera D, Giacometti G, Agostini G (1994) A well resolved ODMR triplet minus singlet spectrum of P680 from PSII particles. FEBS Lett 343:200–204. https://doi.org/10.1016/0014-5793(94)80555-5
Cherepanov DA, Shelaev IV, Gostev FE et al (2020) Evidence that chlorophyll f functions solely as an antenna pigment in far-red-light photosystem I from Fischerella thermalis PCC 7521. Biochim Biophys Acta - Bioenerg 1861:148184. https://doi.org/10.1016/j.bbabio.2020.148184
Croce R, van Amerongen H (2013) Light-harvesting in photosystem I. Photosynth Res 116:153–166. https://doi.org/10.1007/s11120-013-9838-x
Cser K, Deák Z, Telfer A et al (2008) Energetics of photosystem II charge recombination in Acaryochloris marina studied by thermoluminescence and flash-induced chlorophyll fluorescence measurements. Photosynth Res 98:131–140. https://doi.org/10.1007/s11120-008-9373-3
Cser K, Vass I (2007) Radiative and non-radiative charge recombination pathways in Photosystem II studied by thermoluminescence and chlorophyll fluorescence in the cyanobacterium Synechocystis 6803. Biochim Biophys Acta - Bioenerg 1767:233–243. https://doi.org/10.1016/j.bbabio.2007.01.022
Di Valentin M, Ceola S, Agostini G et al (2007) The photo-excited triplet state of chlorophyll d in methyl-tetrahydrofuran studied by optically detected magnetic resonance and time-resolved EPR. Mol Phys 105:2109–2117. https://doi.org/10.1080/00268970701627797
Diner BA, Rappaport F (2002) Structure, dynamics, and energetics of the primary photochemistry of photosystem II of oxygenic photosynthesis. Annu Rev Plant Biol 53:551–580. https://doi.org/10.1146/annurev.arplant.53.100301.135238
Durrant JR, Giorgi LB, Barber J et al (1990) Characterisation of triplet states in isolated Photosystem II reaction centres: oxygen quenching as a mechanism for photodamage. Biochim Biophys Acta - Bioenerg 1017:167–175. https://doi.org/10.1016/0005-2728(90)90148-W
Feikema WO, Gast P, Klenina IB, Proskuryakov II (2005) EPR characterisation of the triplet state in photosystem II reaction centers with singly reduced primary acceptor QA. Biochim Biophys Acta - Bioenerg 1709:105–112. https://doi.org/10.1016/j.bbabio.2005.07.004
Ferlez B, Agostini A, Carbonera D et al (2017) Triplet charge recombination in heliobacterial reaction centers does not produce a spin-polarized EPR spectrum. Zeitschrift Für Phys Chemie 231:593–607. https://doi.org/10.1515/zpch-2016-0825
Frank HA, McLean MB, Sauer K (1979) Triplet states in photosystem I of spinach chloroplasts and subchloroplast particles. Proc Natl Acad Sci 76:5124–5128. https://doi.org/10.1073/pnas.76.10.5124
Gan F, Zhang S, Rockwell NC et al (2014) Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light. Science 80(345):1312–1317. https://doi.org/10.1126/science.1256963
Gast P, Swarthoff T, Ebskamp FCR, Hoff AJ (1983) Evidence for a new early acceptor in photosystem I of plants. An ESR investigation of reaction center triplet yield and of the reduced intermediary acceptors. Biochim Biophys Acta - Bioenerg 722:163–175. https://doi.org/10.1016/0005-2728(83)90170-6
Giera W, Ramesh VM, Webber AN, van Stokkum IHM, van Grondelle R, Gibasiewicz K (2010) Effect of the P700 pre-oxidation and point mutations near A0 on the reversibility of the primary charge separation in Photosystem I from Chlamydomonas reinhardtii. Biochim Biophys Acta 1797:106–112. https://doi.org/10.1016/j.bbabio.2009.09.006
Gillie JK, Lyle PA, Small GJ, Golbeck JH (1989) Spectral hole burning of the primary electron donor state of photosystem I. Photosynth Res 22:233–246. https://doi.org/10.1007/BF00048302
Gobets B, van Grondelle R (2001) Energy transfer and trapping in photosystem I. Biochim Biophys Acta - Bioenerg 1507:80–99. https://doi.org/10.1016/S0005-2728(01)00203-1
Hamaguchi T, Kawakami K, Shinzawa-Itoh K et al (2021) Structure of the far-red light utilizing photosystem I of Acaryochloris marina. Nat Commun 12:2333. https://doi.org/10.1038/s41467-021-22502-8
Hartzler DA, Niedzwiedzki DM, Bryant DA et al (2014) Triplet excited state energies and phosphorescence spectra of (Bacterio)chlorophylls. J Phys Chem B 118:7221–7232
Hastings G, Wang R (2008) Vibrational mode frequency calculations of chlorophyll-d for assessing (P740+–P740) FTIR difference spectra obtained using photosystem I particles from Acaryochloris marina. Photosynth Res 95:55–62. https://doi.org/10.1007/s11120-007-9228-3
Hillmann B, Brettel K, van Mieghem F et al (1995) Charge recombination reactions in photosystem II. 2. Transient absorbance difference spectra and their temperature dependence. Biochemistry 34:4814–4827. https://doi.org/10.1021/bi00014a039
Ho M-Y, Soulier NT, Canniffe DP et al (2017) Light regulation of pigment and photosystem biosynthesis in cyanobacteria. Curr Opin Plant Biol 37:24–33. https://doi.org/10.1016/j.pbi.2017.03.006
Holt AS, Morley HV (1959) A proposed structure for chlorophyll d. Can J Chem 37:507–514. https://doi.org/10.1139/v59-069
Holzwarth AR, Müller MG, Niklas J, Lubitz W (2005) Charge recombination fluorescence in photosystem I reaction centers from Chlamydomonas reinhardtii. J Phys Chem B 109:5903–5911. https://doi.org/10.1021/jp046299f
Hu Q, Miyashita H, Iwasaki I et al (1998) A photosystem I reaction center driven by chlorophyll d in oxygenic photosynthesis. Proc Natl Acad Sci 95:13319–13323. https://doi.org/10.1073/pnas.95.22.13319
Itoh S, Mino H, Itoh K et al (2007) Function of chlorophyll d in reaction centers of photosystems I and II of the oxygenic photosynthesis of Acaryochloris marina. Biochemistry 46:12473–12481. https://doi.org/10.1021/bi7008085
Jankowiak R, Reppert M, Zazubovich V et al (2011) Site selective and single complex laser-based spectroscopies: a window on excited state electronic structure, excitation energy transfer, and electron-phonon coupling of selected photosynthetic complexes. Chem Rev 111:4546–4598. https://doi.org/10.1021/cr100234j
Jankowiak R, Small GJ (1993) Spectral hole burning: a window on excited state electronic structure, heterogeneity, electron-phonon coupling, and transport dynamics of photosynthetic units. In: Deisenhofer J, Norris J (eds) The photosynthetic reaction center, vol 2. Academic Press, Cambridge
Kato K, Shinoda T, Nagao R, Akimoto S, Suzuki T, Dohmae N, Chen M, Allakhverdiev SI, Shen JR, Akita F, Miyazaki N, Tomo T (2020) Structural basis for the adaptation and function of chlorophyll f in photosystem I. Nat Commun 11:1–10. https://doi.org/10.1038/s41467-019-13898-5
Kaucikas M, Nürnberg D, Dorlhiac G, Rutherford AW, van Thor JJ (2017) Femtosecond visible transient absorption spectroscopy of chlorophyll f-containing photosystem I. Biophys J 112:234–249. https://doi.org/10.1016/j.bpj.2016.12.022
Ke B (1973) The primary electron acceptor of photosystem I. Biochim Biophys Acta - Rev Bioenerg 301:1–33. https://doi.org/10.1016/0304-4173(73)90010-4
Kimura A, Kitoh-Nishioka H, Aota T et al (2022) Theoretical model of the far-red-light-adapted photosystem i reaction center of cyanobacterium Acaryochloris marina using chlorophyll d and the effect of chlorophyll exchange. J Phys Chem B 126:4009–4021. https://doi.org/10.1021/acs.jpcb.2c00869
Kobayashi M, Akutsu S, Fujinuma D, et al. (2013) Physicochemical Properties of Chlorophylls in Oxygenic Photosynthesis — Succession of Co-Factors from Anoxygenic to Oxygenic Photosynthesis. In: Dubinsky Z (eds) Photosynthesis. InTech, pp 47–90
Kok B (1961) Partial purification and determination of oxidation reduction potential of the photosynthetic chlorophyll complex absorbing at 700 mμ. Biochim Biophys Acta 48:527–533. https://doi.org/10.1016/0006-3002(61)90050-6
Kramer H, Mathis P (1980) Quantum yield and rate of formation of the carotenoid triplet state in photosynthetic structures. Biochim Biophys Acta - Bioenerg 593:319–329. https://doi.org/10.1016/0005-2728(80)90069-9
Krasnovskiĭ AA (2004) Photodynamic activity and singlet oxygen. Biofizika 49:305–321
Krasnovsky AA (1982) Delayed fluorescence and phosphorescence of plant pigments. Photochem Photobiol 36:733–741. https://doi.org/10.1111/j.1751-1097.1982.tb09497.x
Krasnovsky AA (1994) Singlet molecular oxygen and primary mechanisms of photo-oxidative damage of chloroplasts. Studies based on detection of oxygen and pigment phosphorescence. Proc R Soc Edinburgh Sect B Biol Sci 102:219–235. https://doi.org/10.1017/S0269727000014147
Kühl M, Chen M, Ralph PJ et al (2005) A niche for cyanobacteria containing chlorophyll d. Nature 433:820–820. https://doi.org/10.1038/433820a
Kumazaki S, Abiko K, Ikegami I et al (2002) Energy equilibration and primary charge separation in chlorophyll d -based photosystem I reaction center isolated from Acaryochloris marina. FEBS Lett 530:153–157. https://doi.org/10.1016/S0014-5793(02)03446-4
Lathrop EJP, Friesner RA (1994) Vibronic mixing in the strong electronic coupling limit. Spectroscopic effects of forbidden transitions. J Phys Chem 98:3050–3055. https://doi.org/10.1021/j100062a050
Li Y, Scales N, Blankenship RE et al (2012) Extinction coefficient for red-shifted chlorophylls: Chlorophyll d and chlorophyll f. Biochim Biophys Acta - Bioenerg 1817:1292–1298. https://doi.org/10.1016/j.bbabio.2012.02.026
Lubitz W (2002) Pulse EPR and ENDOR studies of light-induced radicals and triplet states in photosystem II of oxygenic photosynthesis. Phys Chem Chem Phys 4:5539–5545. https://doi.org/10.1039/B206551G
Lubitz W, Lendzian F, Bittl R (2002) Radicals, radical pairs and triplet states in photosynthesis. Acc Chem Res 35:313–320. https://doi.org/10.1021/ar000084g
Mascoli V, Bersanini L, Croce R (2020) Far-red absorption and light-use efficiency trade-offs in chlorophyll f photosynthesis. Nat Plants 6:1044–1053. https://doi.org/10.1038/s41477-020-0718-z
Mathis P, Butler WL, Satoh K (1979) Carotenoid triplet state and chlorophyll fluorescence quenching in chloroplasts and subchloroplast particles. Photochem Photobiol 30:603–614. https://doi.org/10.1111/j.1751-1097.1979.tb07187.x
McLean MB, Sauer K (1982) The dependence of reaction center and antenna triplets on the redox state of Photosystem I. Biochim Biophys Acta - Bioenerg 679:384–392. https://doi.org/10.1016/0005-2728(82)90158-X
Mi D, Chen M, Lin S et al (2003) Excitation dynamics in the core antenna in the photosystem I reaction center of the chlorophyll D -containing photosynthetic prokaryote Acaryochloris marina. J Phys Chem B 107:1452–1457. https://doi.org/10.1021/jp0268260
Mino H, Kawamori A, Aoyama D et al (2005) Proton ENDOR study of the primary donor P740+, a special pair of chlorophyll d in photosystem I reaction center of Acaryochloris marina. Chem Phys Lett 411:262–266. https://doi.org/10.1016/j.cplett.2005.06.033
Miyashita H, Ikemoto H, Kurano N et al (1996) Chlorophyll d as a major pigment. Nature 383:402–402. https://doi.org/10.1038/383402a0
Molotokaite E, Remelli W, Casazza AP, Zucchelli G, Polli D, Cerullo G, Santabarbara S (2017) Trapping dynamics in photosystem I-light harvesting complex I of higher plants is governed by the competition between excited state diffusion from low energy states and photochemical charge separation. J Phys Chem B 121:9816–9830. https://doi.org/10.1021/acs.jpcb.7b07064
Müller MG, Niklas J, Lubitz W, Holzwarth AR (2003) Ultrafast transient absorption studies on photosystem I reaction centers from Chlamydomonas reinhardtii. 1. A new interpretation of the energy trapping and early electron transfer steps in photosystem I. Biophys J 85:3899–3922. https://doi.org/10.1016/S0006-3495(03)74804-8
Müller MG, Slavov C, Luthra R, Redding KE, Holzwarth AR (2010) Independent initiation of primary electron transfer in the two branches of the photosystem I reaction center. Proc Natl Acad Sci U S A 107:4123–4128. https://doi.org/10.1073/pnas.0905407107
Nakamura A, Suzawa T, Kato Y, Watanabe T (2011) Species dependence of the redox potential of the primary electron donor P700 in photosystem I of oxygenic photosynthetic organisms revealed by spectroelectrochemistry. Plant Cell Physiol 52:815–823. https://doi.org/10.1093/pcp/pcr034
Neverov KV, Santabarbara S, Krasnovsky AA (2011) Phosphorescence study of chlorophyll d photophysics. Determination of the energy and lifetime of the photo-excited triplet state. Evidence of singlet oxygen photosensitization. Photosynth Res 108:101–106. https://doi.org/10.1007/s11120-011-9657-x
Niedzwiedzki DM, Blankenship RE (2010) Singlet and triplet excited state properties of natural chlorophylls and bacteriochlorophylls. Photosynth Res 106:227–238. https://doi.org/10.1007/s11120-010-9598-9
Nieuwenburg P, Clarke RJ, Cai Z-L et al (2007) Examination of the photophysical processes of chlorophyll d leading to a clarification of proposed uphill energy transfer processes in cells of Acaryochloris marina¶. Photochem Photobiol 77:628–637. https://doi.org/10.1562/0031-8655(2003)0770628EOTPPO2.0.CO2
Nürnberg DJ, Morton J, Santabarbara S et al (2018) Photochemistry beyond the red limit in chlorophyll f–containing photosystems. Science 80(360):1210–1213. https://doi.org/10.1126/science.aar8313
Ohashi S, Miyashita H, Okada N, Iemura T, Watanabe T, Kobayashi M (2008) Unique photosystems in Acaryochloris marina. Photosynth Res 98:141–149. https://doi.org/10.1007/s11120-008-9383-1
Razeghifard MR, Chen M, Hughes JL et al (2005) Spectroscopic studies of photosystem II in chlorophyll d -containing Acaryochloris marina. Biochemistry 44:11178–11187. https://doi.org/10.1021/bi048314c
Renger T, Schlodder E (2008) The primary electron donor of photosystem II of the cyanobacterium Acaryochloris marina Is a chlorophyll d and the water oxidation Is driven by a chlorophyll a /chlorophyll d heterodimer. J Phys Chem B 112:7351–7354. https://doi.org/10.1021/jp801900e
Renger T, Schlodder E (2006) Modeling of Optical Spectra and Light Harvesting in Photosystem I. In: Golbeck JH (ed) Photosystem I advances in photosynthesis and respiration, vol 24. Springer. Netherlands, Dordrecht, pp 595–610
Renger T, Trostmann I, Theiss C et al (2007) Refinement of a structural model of a pigment-protein complex by accurate optical line shape theory and experiments. J Phys Chem B 111:10487–10501. https://doi.org/10.1021/jp0717241
Rutherford AW, Sétif P (1990) Orientation of P700, the primary electron donor of Photosystem I. Biochim Biophys Acta - Bioenerg 1019:128–132. https://doi.org/10.1016/0005-2728(90)90133-O
Russo M, Petropoulos V, Molotokaite E, Cerullo G, Casazza AP, Maiuri M, Santabarbara S (2020) Ultrafast excited-state dynamics in land plants photosystem I core and whole supercomplex under oxidised electron donor conditions. Photosynth Res 144:221–233. https://doi.org/10.1007/s11120-020-00717-y
Santabarbara S, Agostini A, Casazza AP et al (2015) Carotenoid triplet states in photosystem II: coupling with low-energy states of the core complex. Biochim Biophys Acta - Bioenerg 1847:262–275. https://doi.org/10.1016/j.bbabio.2014.11.008
Santabarbara S, Agostini G, Casazza AP et al (2007) Chlorophyll triplet states associated with photosystem I and photosystem II in thylakoids of the green alga Chlamydomonas reinhardtii. Biochim Biophys Acta - Bioenerg 1767:88–105. https://doi.org/10.1016/j.bbabio.2006.10.007
Santabarbara S, Bailleul B, Redding K et al (2012) Kinetics of phyllosemiquinone oxidation in the photosystem I reaction centre of Acaryochloris marina. Biochim Biophys Acta - Bioenerg 1817:328–335. https://doi.org/10.1016/j.bbabio.2011.10.003
Santabarbara S, Bordignon E, Jennings RC, Carbonera D (2002a) Chlorophyll triplet states associated with photosystem II of thylakoids. Biochemistry 41:8184–8194. https://doi.org/10.1021/bi0201163
Santabarbara S, Carbonera D (2005) Carotenoid triplet states associated with the long-wavelength-emitting chlorophyll forms of photosystem I in isolated thylakoid membranes. J Phys Chem B 109:986–991. https://doi.org/10.1021/jp047077k
Santabarbara S, Casazza AP, Belgio E et al (2020) Light harvesting by long-wavelength chlorophyll forms (Red Forms). In: Larkum A, Grossman A, Raven J (eds) Photosynthesis in Algae: biochemical and physiological mechanisms. Advances in photosynthesis and respiration, vol 45. Springer, New York, pp 261–297
Santabarbara S, Cazzalini I, Rivadossi A et al (2002b) Photoinhibition in vivo and in vitro involves weakly coupled chlorophyll-protein complexes‡. Photochem Photobiol 75:613. https://doi.org/10.1562/0031-8655(2002)075%3c0613:PIVAIV%3e2.0.CO;2
Santabarbara S, Galuppini L, Casazza AP (2010) Bidirectional electron transfer in the reaction centre of photosystem I. J Integr Plant Biol 52:735–749. https://doi.org/10.1111/j.1744-7909.2010.00977.x
Santabarbara S, Heathcote P, Evans MCW (2005) Modelling of the electron transfer reactions in photosystem I by electron tunnelling theory: the phylloquinones bound to the PsaA and the PsaB reaction centre subunits of PS I are almost isoenergetic to the iron–sulfur cluster FX. Biochim Biophys Acta - Bioenerg 1708:283–310. https://doi.org/10.1016/j.bbabio.2005.05.001
Santabarbara S, Jennings RC (2005) The size of the population of weakly coupled chlorophyll pigments involved in thylakoid photoinhibition determined by steady-state fluorescence spectroscopy. Biochim Biophys Acta - Bioenerg 1709:138–149. https://doi.org/10.1016/j.bbabio.2005.06.001
Santabarbara S, Jennings RC, Carbonera D (2003) Analysis of photosystem II triplet states in thylakoids by fluorescence detected magnetic resonance in relation to the redox state of the primary quinone acceptor QA. Chem Phys 294:257–266. https://doi.org/10.1016/S0301-0104(03)00279-9
Santabarbara S, Neverov KV, Garlaschi FM et al (2001) Involvement of uncoupled antenna chlorophylls in photoinhibition in thylakoids. FEBS Lett 491:109–113. https://doi.org/10.1016/S0014-5793(01)02174-3
Schatz GH, Brock H, Holzwarth AR (1988) Kinetic and energetic model for the primary processes in photosystem II. Biophys J 54:397–405. https://doi.org/10.1016/S0006-3495(88)82973-4
Schenderlein M, Çetin M, Barber J et al (2008) Spectroscopic studies of the chlorophyll d containing photosystem I from the cyanobacterium, Acaryochloris marina. Biochim Biophys Acta - Bioenerg 1777:1400–1408. https://doi.org/10.1016/j.bbabio.2008.08.008
Schiller H, Senger H, Miyashita H et al (1997) Light-harvesting in Acaryochloris marina - spectroscopic characterization of a chlorophyll d -dominated photosynthetic antenna system. FEBS Lett 410:433–436. https://doi.org/10.1016/S0014-5793(97)00620-0
Schlodder E, Çetin M, Eckert H-J et al (2007) Both chlorophylls a and d are essential for the photochemistry in photosystem II of the cyanobacteria, Acaryochloris marina. Biochim Biophys Acta - Bioenerg 1767:589–595. https://doi.org/10.1016/j.bbabio.2007.02.018
Searle GFW, Koehorst RBM, Schaafsma TJ et al (1981) Fluorescence detected magnetic resonance (FDMR) spectroscopy of chlorophyll-proteins from barley. Carlsberg Res Commun 46:183–194. https://doi.org/10.1007/BF02906496
Searle GFW, Schaafsma TJ (1992) Fluorescence detected magnetic resonance of the primary donor and inner core antenna chlorophyll in photosystem I reaction centre protein: sign inversion and energy transfer. Photosynth Res 32:193–206. https://doi.org/10.1007/BF00034795
Siefermann-Harms D (1987) The light-harvesting and protective functions of carotenoids in photosynthetic membranes. Physiol Plant 69:561–568. https://doi.org/10.1111/j.1399-3054.1987.tb09240.x
Sivakumar V, Wang R, Hastings G (2003) Photo-oxidation of P740, the primary electron donor in photosystem I from Acaryochloris marina. Biophys J 85:3162–3172. https://doi.org/10.1016/S0006-3495(03)74734-1
Stoll S, Schweiger A (2006) EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J Magn Reson 178:42–55. https://doi.org/10.1016/j.jmr.2005.08.013
Telfer A (2014) Singlet oxygen production by PSII under light stress: mechanism, detection and the protective role of β-carotene. Plant Cell Physiol 55:1216–1223. https://doi.org/10.1093/pcp/pcu040
Telfer A, Bishop SM, Phillips D, Barber J (1994) Isolated photosynthetic reaction center of photosystem II as a sensitizer for the formation of singlet oxygen. Detection and quantum yield determination using a chemical trapping technique. J Biol Chem 269:13244–13253. https://doi.org/10.1016/S0021-9258(17)36825-4
Tomo T, Allakhverdiev SI, Mimuro M (2011) Constitution and energetics of photosystem I and photosystem II in the chlorophyll d-dominated cyanobacterium Acaryochloris marina. J Photochem Photobiol B Biol 104:333–340. https://doi.org/10.1016/j.jphotobiol.2011.02.017
Tomo T, Kato Y, Suzuki T et al (2008) Characterization of highly purified photosystem I complexes from the chlorophyll d-dominated cyanobacterium Acaryochloris marina MBIC 11017. J Biol Chem 283:18198–18209. https://doi.org/10.1074/jbc.M801805200
Tomo T, Okubo T, Akimoto S, Yokono M, Miyashita H, Tsuchiya T, Noguchi T, Mimuro M (2007) Identification of the special pair of photosystem II in a chlorophyll d-dominated cyanobacterium. Proc Natl Acad Sci USA 104:7283–7288. https://doi.org/10.1073/pnas.0701847104
Trubitsin BV, Mamedov MD, Semenov AY, Tikhonov AN (2014) Interaction of ascorbate with photosystem I. Photosynth Res 122:215–231. https://doi.org/10.1007/s11120-014-0023-7.
van Mieghem F, Brettel K, Hillman B et al (1995) Charge recombination reactions in photosystem II. 1. yields, recombination pathways, and kinetics of the primary pair. Biochemistry 34:4798–4813. https://doi.org/10.1021/bi00014a038
Vass I, Styring S (1993) Characterization of chlorophyll triplet promoting states in photosystem II sequentially induced during photoinhibition. Biochemistry 32:3334–3341. https://doi.org/10.1021/bi00064a016
Viola S, Roseby W, Santabarbara S et al (2022) Impact of energy limitations on function and resilience in long-wavelength photosystem II. Elife. https://doi.org/10.7554/eLife.79890
Webber AN, Lubitz W (2001) P700: the primary electron donor of photosystem I. Biochim Biophys Acta - Bioenerg 1507:61–79. https://doi.org/10.1016/S0005-2728(01)00198-0
Witt H, Bordignon E, Carbonera D et al (2003) Species-specific differences of the spectroscopic properties of P700: analysis of the influence of non-conserved amino acid residues by site-directed mutagenesis of photosystem I from Chlamydomonas reinhardtii. J Biol Chem 278:46760–46771. https://doi.org/10.1074/jbc.M304776200
Wolff C, Witt HT (1969) On Metastable States of carotenoids in primary events of photosynthesis. Zeitschrift Für Naturforsch B 24:1031–1037. https://doi.org/10.1515/znb-1969-0818
Xu C, Zhu Q, Chen J et al (2021) A unique photosystem I reaction center from a chlorophyll d-containing cyanobacterium Acaryochloris marina. J Integr Plant Biol 63:1740–1752. https://doi.org/10.1111/jipb.13113
Zamzam N, Rakowski R, Kaucikas M et al (2020) Femtosecond visible transient absorption spectroscopy of chlorophyll-f-containing photosystem II. Proc Natl Acad Sci 117:23158–23164. https://doi.org/10.1073/pnas.2006016117
Acknowledgements
SS and APC acknowledge support from Regione Lombardia through the project “Enhancing Photosynthesis” (DSS 16652 30/11/2021) on behalf of the winners of the “Lombardia è Ricerca – 2020” award. AAP acknowledge support from by Russian Science Foundation Grant RSF 21-74-10085. AA and DC acknowledge financial support from the University of Padova (P-DiSC-2019). MB acknowledges support from P-DiSC#02BIRD2020-UNIPD.
Author information
Authors and Affiliations
Contributions
"S.S. and D.C. designed the research and wrote the bulk of the paper; S.S., A.A. and M.B. performed ODMR and TR-EPR spectroscopic investigations and analysed the data; A.A.P., A.P.C. and S.S. maintained the strains, developed the biochemical purification and performed preliminary spectroscopic investigations of the purified material; All authors reviewed the paper and contributed to its final redaction"
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Santabarbara, S., Agostini, A., Petrova, A.A. et al. Chlorophyll triplet states in thylakoid membranes of Acaryochloris marina. Evidence for a triplet state sitting on the photosystem I primary donor populated by intersystem crossing. Photosynth Res 159, 133–152 (2024). https://doi.org/10.1007/s11120-023-01023-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11120-023-01023-z