Skip to main content
Log in

Biochemical and spectroscopic characterizations of the oligomeric antenna of the coral symbiotic Symbiodiniaceae Fugacium kawagutii

  • Original article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Light-harvesting antennas in photosynthesis capture light energy and transfer it to the reaction centers (RCs) where photochemistry takes place. The sustainable growth of the reef-building corals relies on a constant supply of the photosynthates produced by the endosymbiotic dinoflagellate, belonging to the family of Symbiodiniaceae. The antenna system in this group consists of the water-soluble peridinin-chlorophyll a-protein (PCP) and the intrinsic membrane chlorophyll a-chlorophyll c2-peridinin protein complex (acpPC). In this report, a nonameric acpPC is reported in a dinoflagellate, Fugasium kawagutii (formerly Symbiodinium kawagutii sp. CS-156). We found that extensive biochemical purification altered the oligomerization states of the initially isolated nonameric acpPC. The excitation energy transfer pathways in the acpPC nonamer and its variants were studied using time-resolved fluorescence and time-resolved absorption spectroscopic techniques at 77 K. Compared to the well-characterized trimeric acpPC, the nonameric acpPC contains an 11 nm red-shifted terminal energy emitter and substantially altered excited state lifetimes of Chl a. The observed energetic overlap of the fluorescence terminal energy emitters with the absorption of RCs is hypothesized to enable efficient downhill excitation energy transfer. Additionally, the shortened Chl a fluorescence decay lifetime in the oligomeric acpPC indicate a protective self-relaxation strategy. We propose that the highly-oligomerized acpPC nonamer represents an intact functional unit in the Symbiodiniaceae thylakoid membrane. They perform efficient excitation energy transfer (to RCs), and are under manageable regulations in favor of photoprotection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bautista JA, Connors RE, Raju BB, Hiller RG, Sharples FP, Gosztola D, Wasielewski MR, Frank HA (1999) Excited state properties of peridinin: observation of a solvent dependence of the lowest excited singlet state lifetime and spectral behavior unique among carotenoids. J Phys Chem B 103(41):8751–8758

    Article  CAS  Google Scholar 

  • Beer A, Gundermann K, Beckmann J, Buchel C (2006) Subunit composition and pigmentation of fucoxanthin-chlorophyll proteins in diatoms: evidence for a subunit involved in diadinoxanthin and diatoxanthin binding. Biochemistry 45(43):13046–13053

    Article  CAS  PubMed  Google Scholar 

  • Blankenship RE (2021) Molecular Mechanisms of Photosynthesis, pp. 61-87. (John Wiley & Sons).

  • Buchel C (2003) Fucoxanthin-chlorophyll proteins in diatoms: 18 and 19 kDa subunits assemble into different oligomeric states. Biochemistry 42(44):13027–13034

    Article  PubMed  Google Scholar 

  • Buchel C (2015) Evolution and function of light harvesting proteins. J Plant Physiol 172:62–75

    Article  PubMed  Google Scholar 

  • Burton-Smith RN, Watanabe A, Tokutse R, Song CH, Murata K, Minagawa J (2019) Structural determination of the large photosystem II?light-harvesting complex II supercomplex of Chlamydomonas reinhardtii using nonionic amphipol. J Biol Chem 294(41):15003–15013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Valentin M, Salvadori E, Agostini G, Biasibetti F, Ceola S, Hiller R, Giacometti GM, Carbonera D (2010) Triplet-triplet energy transfer in the major intrinsic light-harvesting complex of Amphidinium carterae as revealed by ODMR and EPR spectroscopies. BBA-Bioenergetics 1797(10):1759–1767

    Article  PubMed  Google Scholar 

  • Durnford DG, Deane JA, Tan S, McFadden GI, Gantt E, Green BR (1999) A phylogenetic assessment of the eukaryotic light-harvesting antenna proteins, with implications for plastid evolution. J Mol Evol 48(1):59–68

    Article  CAS  PubMed  Google Scholar 

  • Hiller RG, Wrench PM, Gooley AP, Shoebridge G, Breton J (1993) The major intrinsic light-harvesting protein of Amphidinium - characterization and relation to other light-harvesting proteins. Photochem Photobiol 57(1):125–131

    Article  CAS  PubMed  Google Scholar 

  • Hiller RG, Wrench PM, Sharples FP (1995) The light-harvesting chlorophyll a-c-binding protein of dinoflagellates—a putative polyprotein. FEBS Lett 363(1–2):175–178

    Article  CAS  PubMed  Google Scholar 

  • Hofmann E, Wrench PM, Sharples FP, Hiller RG, Welte W, Diederichs K (1996) Structural basis of light harvesting by carotenoids: peridinin-chlorophyll-protein from Amphidinium carterae. Science 272(5269):1788–1791

    Article  CAS  PubMed  Google Scholar 

  • Iglesiasprieto R, Govind NS, Trench RK (1991) Apoprotein composition and spectroscopic characterization of the water-soluble peridinin chlorophyll alpha-proteins from 3 symbiotic dinoflagellates. Proc R Soc B-Biol Sci 246(1317):275–283

    Article  CAS  Google Scholar 

  • Ilagan RP, Koscielecki JF, Hiller RG, Sharples FP, Gibson GN, Birge RR, Frank HA (2006) Femtosecond time-resolved absorption spectroscopy of main-form and high-salt peridinin-chlorophyll a-proteins at low temperatures. Biochemistry 45:14052–14063

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Zhang H, Orf GS, Lu Y, Xu W, Harrington LB, Liu H, Lo CS, Blankenship RE (2014) Evidence of functional trimeric chlorophyll a/c2-peridinin proteins in the dinoflagellate Symbiodinium. Biochim Biophys Acta 1837(11):1904–1912

    Article  CAS  PubMed  Google Scholar 

  • Kanazawa A, Blanchard GJ, Szabo M, Ralph PJ, Kramer DM (2014) The site of regulation of light capture in Symbiodinium: does the peridinin-chlorophyll a-protein detach to regulate light capture? Biochim Biophys Acta 1837(8):1227–1234

    Article  CAS  PubMed  Google Scholar 

  • Lepetit B, Volke D, Gilbert M, Wilhelm C, Goss R (2010) Evidence for the existence of one antenna-associated, lipid-dissolved and two protein-bound pools of diadinoxanthin cycle pigments in diatoms. Plant Physiol 154(4):1905–1920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu ZF, Yan HC, Wang KB, Kuang TY, Zhang JP, Gui LL, An XM, Chang WR (2004) Crystal structure of spinach major light-harvesting complex at 2.72 angstrom resolution. Nature 428(6980):287–292

    Article  CAS  PubMed  Google Scholar 

  • Miloslavina Y, Wehner A, Lambrev PH, Wientjes E, Reus M, Garab G, Croce R, Holzwarth AR (2008) Far-red fluorescence: a direct spectroscopic marker for LHCII oligomer formation in non-photochemical quenching. FEBS Lett 582(25–26):3625–3631

    Article  CAS  PubMed  Google Scholar 

  • Niedzwiedzki DM, Fuciman M, Frank HA, Blankenship RE (2011) Energy transfer in an LH4-like light harvesting complex from the aerobic purple photosynthetic bacterium Roseobacter denitrificans. Biochem Biophys Acta 1807(5):518–528

    CAS  PubMed  Google Scholar 

  • Niedzwiedzki DM, Jiang J, Lo CS, Blankenship RE (2013) Low-temperature spectroscopic properties of the peridinin-chlorophyll a-protein (PCP) complex from the coral symbiotic dinoflagellate Symbiodinium. J Phys Chem B 117(38):11091–11099

    Article  CAS  PubMed  Google Scholar 

  • Niedzwiedzki DM, Jiang J, Lo CS, Blankenship RE (2014) Spectroscopic properties of the chlorophyll a-chlorophyll c (2)-peridinin-protein-complex (acpPC) from the coral symbiotic dinoflagellate Symbiodinium. Photosynth Res 120(1–2):125–139

    Article  CAS  PubMed  Google Scholar 

  • Polivka T, Sundstrom V (2004) Ultrafast dynamics of carotenoid excited states—from solution to natural and artificial systems. Chem Rev 104(4):2021–2071

    Article  CAS  PubMed  Google Scholar 

  • Polivka T, van Stokkum IH, Zigmantas D, van Grondelle R, Sundstrom V, Hiller RG (2006) Energy transfer in the major intrinsic light-harvesting complex from Amphidinium carterae. Biochemistry 45(28):8516–8526

    Article  CAS  PubMed  Google Scholar 

  • Reynolds JM, Bruns BU, Fitt WK, Schmidt GW (2008) Enhanced photoprotection pathways in symbiotic dinoflagellates of shallow-water corals and other cnidarians. Proc Natl Acad Sci U S A 105(36):13674–13678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schagger H, von Jagow G (1991) Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem 199(2):223–231

    Article  CAS  PubMed  Google Scholar 

  • Schulte T, Niedzwiedzki DM, Birge RR, Hiller RG, Polivka T, Hofmann E, Frank HA (2009a) Identification of a single peridinin sensing Chl-a excitation in reconstituted PCP by crystallography and spectroscopy. Proc Natl Acad Sci USA 106(49):20764–20769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulte T, Sharples FP, Hiller RG, Hofmann E (2009b) X-ray structure of the high-salt form of the peridinin-chlorophyll a-protein from the dinoflagellate Amphidinium carterae: Modulation of the spectral properties of pigments by the protein environment. Biochemistry 48(21):4466–4475

    Article  CAS  PubMed  Google Scholar 

  • Schulte T, Johanning S, Hofmann E (2010) Structure and function of native and refolded peridinin-chlorophyll-proteins from dinoflagellates. Eur J Cell Biol 89(12):990–997

    Article  CAS  PubMed  Google Scholar 

  • Sharples FP, Wrench PM, Ou KL, Hiller RG (1996) Two distinct forms of the peridinin-chlorophyll alpha-protein from Amphidinium carterae. BBA-Bioenergetics 1276(2):117–123

    Article  PubMed  Google Scholar 

  • Shen LL, Huang ZH, Chang SH, Wang WD, Wang JF, Kuang TY, Han GY, Shen JR, Zhang X (2019) Structure of a C2S2M2N2 type PSII-LHCII supercomplex from the green alga Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 116(42):21246–21255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slouf V, Fuciman M, Johanning S, Hofmann E, Frank HA, Polivka T (2013) Low-temperature time-resolved spectroscopic study of the major light-harvesting complex of Amphidinium carterae. Photosynth Res 117(1–3):257–265

    Article  CAS  PubMed  Google Scholar 

  • van Stokkum IH, Larsen DS, van Grondelle R (2004) Global and target analysis of time-resolved spectra. Biochim Biophys Acta 1657(2–3):82–104

    Article  PubMed  Google Scholar 

  • van Stokkum IHM, Papagiannakis E, Vengris M, Salverda JM, Polivka T, Zigmantas D, Larsen DS, Lampoura SS, Hiller RG, van Grondelle R (2009) Inter-pigment interactions in the peridinin chlorophyll protein studied by global and target analysis of time resolved absorption spectra. Chem Phys 357(1–3):70–78

    Article  Google Scholar 

  • Vinklarek IS, Bornemann TLV, Lokstein H, Hofmann E, Alster J, Psencik J (2018) Temperature dependence of chlorophyll triplet quenching in two photosynthetic light-harvesting complexes from higher plants and dinoflagellates. J Phys Chem B 122(38):8834–8845

    Article  CAS  PubMed  Google Scholar 

  • Wang WD, Yu LJ, Xu CZ, Tomizaki T, Zhao SH, Umena Y, Chen XB, Qin XC, Xin YY, Suga M, Han GY, Kuang TY, Shen JR (2019) Structural basis for blue-green light harvesting and energy dissipation in diatoms. Science 363(6427):598

    Article  Google Scholar 

  • Wen J, Zhang H, Gross ML, Blankenship RE (2011) Native electrospray mass spectrometry reveals the nature and stoichiometry of pigments in the FMO photosynthetic antenna protein. Biochemistry 50(17):3502–3511

    Article  CAS  PubMed  Google Scholar 

  • Zigmantas D, Polivka T, Hiller RG, Yartsev A, Sundstrom V (2001) Spectroscopic and dynamic properties of the peridinin lowest singlet excited states. J Phys Chem A 105(45):10296–10306

    Article  CAS  Google Scholar 

  • Zigmantas D, Hiller RG, Sundstrom V, Polivka T (2002) Carotenoid to chlorophyll energy transfer in the peridinin-chlorophyll-a-protein complex involves an intramolecular charge transfer state. Proc Natl Acad Sci USA 99(26):16760–16765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zigmantas D, Hiller RG, Yartsev A, Sundstrom V, Polivka T (2003) Dynamics of excited states of the carotenoid peridinin in polar solvents: dependence on excitation wavelength, viscosity, and temperature. J Phys Chem B 107(22):5339–5348

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Atsuko Kanazawa in David Kramer’s lab for sharing the Fugacium kawagutii strain and helpful discussion. D.N.M. acknowledges Center for Solar Energy and Energy Storage at McKelvey School of Engineering at Washington University in Saint Louis for finanacial support. N.C. M. M. was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences under grant DE-CD0002036 to Professors: Chris Kirmaier and Dewey Holten. This research was supported by the Danforth Seed Grant of Department of Biology at Washington University in Saint Louis (to H.L.). H. L. also acknowledges the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Photosynthetic Systems (PS) Program (Grant DE-FG02-07ER15902 to H.L.).

Funding

This study was supported by U.S. Department of Energy (Grant No. DE-FG02-07ER15902, DE-CD0002036), and Danforth Foundation, Seed grant Biology Washington University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dariusz M. Niedzwiedzki or Haijun Liu.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2476 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niedzwiedzki, D.M., Magdaong, N.C.M., Su, X. et al. Biochemical and spectroscopic characterizations of the oligomeric antenna of the coral symbiotic Symbiodiniaceae Fugacium kawagutii. Photosynth Res 154, 113–124 (2022). https://doi.org/10.1007/s11120-022-00951-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-022-00951-6

Keywords

Navigation