Skip to main content

Advertisement

Log in

Water oxidation reaction in the presence of a dinuclear Mn(II)-semicarbohydrazone coordination compound

  • Original article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Water splitting, producing of oxygen, and hydrogen molecules, is an essential reaction for clean energy resources and is one of the challenging reactions for artificial photosynthesis. The Mn4Ca cluster in photosystem II (PS-II) is responsible for water oxidation in natural photosynthesis. Due to this, water oxidation reaction by Mn coordination compounds is vital for mimicking the active core of the oxygen-evolving complex in PS-II. Here, a new dinuclear Mn(II)-semicarbohydrazone coordination compound, [Mn(HL)(µ-N3)Cl]2 (1), was synthesized and characterized by various methods. The structure of compound 1 was determined by single crystal X-ray analysis, which revealed the Mn(II) ions have distorted octahedral geometry as (MnN4OCl). This geometry is created by coordinating of oxygen and two nitrogen donor atoms from semicarbohydrazone ligand, two nitrogen atoms from azide bridges, and chloride anion. Compound 1 was used as a catalyst for electrochemical water oxidation, and the surface of the electrode after the reaction was investigated by scanning electron microscopy, energy dispersive spectrometry, and powder X-ray diffraction analyses. Linear sweep voltammetry (LSV) experiments revealed that the electrode containing 1 shows high activity for chemical water oxidation with an electrochemical overpotential as low as 377 mV. Although our findings showed that the carbon paste electrode in the presence of 1 is an efficient electrode for water oxidation, it could not withstand water oxidation catalysis under bulk electrolysis and finally converted to Mn oxide nanoparticles which were active for water oxidation along with compound 1.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abas N, Kalair E, Kalair A, ul Hasan Q, Khan N (2020) Nature inspired artificial photosynthesis technologies for hydrogen production: barriers and challenges. Int J Hydrogen Energy 45(41):20787–20799

    Article  CAS  Google Scholar 

  • Agilent Technologies (2010) CrysAlis, PRO Version 1.171.35.15

  • Akbari MSA, Zand Z, Aleshkevych P, Jagličić Z, Najafpour MM (2022) Finding the true catalyst for water oxidation at low overpotential in the presence of a metal complex. Inorg Chem 61(8):3801–3810

    Article  CAS  Google Scholar 

  • Al-Oweini R, Sartorel A, Bassil BS, Natali M, Berardi S, Scandola F, Kortz M, Bonchio M (2014) Inside cover: photocatalytic water oxidation by a mixed-valent MnIII3MnIVO3 manganese oxo core that mimics the natural oxygen-evolving center. Angew Chem Int Ed 53(42):11100

    Article  Google Scholar 

  • Benniston AC, Harriman A (2008) Artificial photosynthesis. Mater Today 11(12):26–34

    Article  CAS  Google Scholar 

  • Berardi S, Drouet S, Francàs L, Gimbert-Suriñach C, Guttentag M, Richmond C, Stoll T, Llobet A (2014) Molecular artificial photosynthesis. Chem Soc Rev 43(22):7501–7519

    Article  CAS  Google Scholar 

  • Bikas R, Hosseini-Monfared H, Sieroń L, Gutiérrez A (2013) Synthesis, crystal structure, spectroscopic study, and magnetic behavior of the first dinuclear Mn (II) complex of hydrazone-based ligand-containing dicyanamide bridging groups. J Coord Chem 66(22):4023–4031

    Article  CAS  Google Scholar 

  • Bikas R, Hosseini-Monfared H, Vasylyeva V, Sanchiz J, Alonso J, Barandiaran JM, Janiak C (2014) Heteronuclear, mixed-metal Ag (I)–Mn (II) coordination polymers with bridging N-pyridinylisonicotinohydrazide ligands: synthesis, crystal structures, magnetic and photoluminescence properties. Dalton Trans 43(31):11925–11935

    Article  CAS  Google Scholar 

  • Bikas R, Ghorbanloo M, Sasani R, Pantenburg I, Meyer G (2017) Manganese (II) complexes of hydrazone based NNO-donor ligands and their catalytic activity in the oxidation of olefins. J Coord Chem 70(5):819–830

    Article  CAS  Google Scholar 

  • Bikas R, Kuncser V, Sanchiz J, Schinteie G, Siczek M, Hosseini-Monfared H, Lis T (2018) Structure and magnetic behavior of unpredictable EE-azide bridged tetranuclear Mn (II) complex with ONO-donor hydrazone ligand and its transformation to dinuclear Mn (III) complex. Polyhedron 147:142–151

    Article  CAS  Google Scholar 

  • Bikas R, Ajormal F, Noshiranzadeh N, Emami M, Kozakiewicz A (2020a) 1D Azido bridged Cu(II) coordination polymer with 1,3-oxazolidine ligand as an effective catalyst for green click synthesis of 1,2,3-triazoles. Appl Organomet Chem 34(10):e5826

    Article  CAS  Google Scholar 

  • Bikas R, Darvishvand M, Kuncser V, Schinteie G, Siczek M, Lis T (2020b) Investigation of the effect of sodium azide on the coordination mode of flexible ONO-donor hydrazone ligand in preparing manganese coordination compounds. Polyhedron 190:114751

    Article  CAS  Google Scholar 

  • Blakemore JD, Crabtree RH, Brudvig GW (2015) Molecular catalysts for water oxidation. Chem Rev 115(23):12974–13005

    Article  CAS  Google Scholar 

  • Capone M, Narzi D, Guidoni L (2021) Mechanism of oxygen evolution and Mn4CaO5 cluster restoration in the natural water-oxidizing catalyst. Biochemistry 60(30):2341–2348

    Article  CAS  Google Scholar 

  • Casadevall C (2022) Heterogenization of molecular water oxidation catalysts in electrodes for (photo) electrochemical water oxidation. Water 14(3):371

    Article  CAS  Google Scholar 

  • Chowdhury FA, Trudeau ML, Guo H, Mi Z (2018) A photochemical diode artificial photosynthesis system for unassisted high efficiency overall pure water splitting. Nat Commun 9(1):1–9

    Article  Google Scholar 

  • Deng X, Huang J, Wan H, Chen F, Lin Y, Xu X, Ma R, Sasaki T (2019) Recent progress in functionalized layered double hydroxides and their application in efficient electrocatalytic water oxidation. J Energy Chem 32:93–104

    Article  Google Scholar 

  • Dogutan DK, Nocera DG (2019) Artificial photosynthesis at efficiencies greatly exceeding that of natural photosynthesis. Acc Chem Res 52(11):3143–3148

    Article  CAS  Google Scholar 

  • Goorchibeygi S, Bikas R, Soleimani M, Siczek M, Lis T (2022) Molecular structure and catalytic activity of Fe (III) coordination compound with ONO-donor hydrazone ligand in the oxidation of cyclooctene by H2O2. J Mol Struct 1250:131774

    Article  CAS  Google Scholar 

  • Guan J, Duan Z, Zhang F, Kelly SD, Si R, Dupuis M, Huang Q, Chen JQ, Tang C, Li C (2018) Water oxidation on a mononuclear manganese heterogeneous catalyst. Nat Catal 1(11):870–877

    Article  CAS  Google Scholar 

  • Gust D, Moore TA, Moore AL (2012) Realizing artificial photosynthesis. Faraday Discuss 155:9–26

    Article  CAS  Google Scholar 

  • Heydari N, Bikas R, Shaterian M, Lis T (2022) Green solvent free epoxidation of olefins by a heterogenised hydrazone-dioxidotungsten (VI) coordination compound. RSC Adv 12(8):4813–4827

    Article  CAS  Google Scholar 

  • Kim S, Kim KH, Oh C, Zhang K, Park JH (2022) Artificial photosynthesis for high-value-added chemicals: Old material, new opportunity. Carbon Energy 4(1):21–44

    Article  CAS  Google Scholar 

  • Lan T-X, Gao W-S, Chen C-N, Wang H-S, Wang M, Fan Y-H (2018) Two tetranuclear 3d–4f heterometal complexes Mn2Ln2 (Ln= Dy, Gd): synthesis, structure, magnetism, and electrocatalytic reactivity for water oxidation. New J Chem 42(8):5798–5805

    Article  CAS  Google Scholar 

  • Lee WT, Muñoz SB III, Dickie DA, Smith JM (2014) Ligand modification transforms a catalase mimic into a water oxidation catalyst. Angew Chem Int Ed 53(37):9856–9859

    Article  CAS  Google Scholar 

  • Li J, Güttinger R, Moré R, Song F, Wan W, Patzke GR (2017) Frontiers of water oxidation: the quest for true catalysts. Chem Soc Rev 46(20):6124–6147

    Article  CAS  Google Scholar 

  • Limburg B, Bouwman E, Bonnet S (2012) Molecular water oxidation catalysts based on transition metals and their decomposition pathways. Coord Chem Rev 256(15–16):1451–1467

    Article  CAS  Google Scholar 

  • Lubitz W, Chrysina M, Cox N (2019) Water oxidation in photosystem II. Photosynth Res 142(1):105–125

    Article  CAS  Google Scholar 

  • Maayan G, Gluz N, Christou G (2018) A bioinspired soluble manganese cluster as a water oxidation electrocatalyst with low overpotential. Nat Catal 1(1):48–54

    Article  CAS  Google Scholar 

  • Matheu R, Garrido-Barros P, Gil-Sepulcre M, Ertem MZ, Sala X, Gimbert-Suriñach C, Llobet A (2019) The development of molecular water oxidation catalysts. Nat Rev Chem 3(5):331–341

    Article  CAS  Google Scholar 

  • Mousazade Y, Mohammadi MR, Chernev P, Bikas R, Bagheri R, Song Z, Lis T, Siczek M, Noshiranzadeh N, Mebs S, Dau H, Zaharieva I, Najafpour MM (2018) Water oxidation by a manganese–potassium cluster: Mn oxide as a kinetically dominant “true” catalyst for water oxidation. Catal Sci Technol 8(17):4390–4398

    Article  CAS  Google Scholar 

  • Mousazade Y, Mohammadi MR, Bagheri R, Bikas R, Chernev P, Song Z, Lis T, Siczek M, Noshiranzadeh N, Dau H, Zaharieva I, Najafpour MM (2020) A synthetic manganese–calcium cluster similar to the catalyst of Photosystem II: challenges for biomimetic water oxidation. Dalton Trans 49(17):5597–5605

    Article  CAS  Google Scholar 

  • Mullins CS, Pecoraro VL (2008) Reflections on small molecule manganese models that seek to mimic photosynthetic water oxidation chemistry. Coord Chem Rev 252(3–4):416–443

    Article  CAS  Google Scholar 

  • Najafpour MM (2009) A possible evolutionary origin for the Mn4 cluster in photosystem II: from manganese superoxide dismutase to oxygen evolving complex. Origins Life Evol Biospheres 39(2):151–163

    Article  CAS  Google Scholar 

  • Najafpour MM, Allakhverdiev SI (2012) Manganese compounds as water oxidizing catalysts for hydrogen production via water splitting: from manganese complexes to nano-sized manganese oxides. Int J Hydrogen Energy 37(10):8753–8764

    Article  CAS  Google Scholar 

  • Najafpour MM, Boghaei DM (2009) Heterogeneous water oxidation by bidentate Schiff base manganese complexes in the presence of cerium (IV) ammonium nitrate. Transition Met Chem 34(4):367–372

    Article  CAS  Google Scholar 

  • Najafpour MM, Moghaddam AN (2012) Amorphous manganese oxide-coated montmorillonite as an efficient catalyst for water oxidation. New J Chem 36(12):2514–2519

    Article  CAS  Google Scholar 

  • Najafpour MM, Kozlevčar B, McKee V, Jagličić Z, Jagodič M (2011) The first pentanuclear heterobimetallic coordination cation with CeIII, CeIV, and MnII. Inorg Chem Commun 14(1):125–127

    Article  CAS  Google Scholar 

  • Najafpour MM, Tabrizi MA, Haghighi B (2013) A 2-(2-hydroxyphenyl)-1 H-benzimidazole–manganese oxide hybrid as a promising structural model for the tyrosine 161/histidine 190-manganese cluster in photosystem II. Dalton Trans 42(4):879–884

    Article  CAS  Google Scholar 

  • Najafpour MM, Salimi S, Madadkhani S, Hołyńska M, Tomo T, Allakhverdiev SI (2016) Nanostructured manganese oxide on silica aerogel: a new catalyst toward water oxidation. Photosynth Res 130(1):225–235

    Article  CAS  Google Scholar 

  • Najafpour MM, Zaharieva I, Zand Z, Hosseini SM, Kouzmanova M, Hołyńska M, Tranca I, Larkumh AW, Shen J-R, Allakhverdievk SI (2020) Water-oxidizing complex in Photosystem II: its structure and relation to manganese-oxide based catalysts. Coord Chem Rev 409:213183

    Article  CAS  Google Scholar 

  • Narzi D, Guidoni L (2021) Structural and dynamic insights into Mn4Ca cluster-depleted Photosystem II. Phys Chem Chem Phys 23(48):27428–27436

    Article  CAS  Google Scholar 

  • Nath K, Najafpour M, Voloshin R, Balaghi S, Tyystjärvi E, Timilsina R, Eaton-Rye JJ, Tomo T, Nam HG, Nishihara H, Ramakrishna S, Shen J-R, Allakhverdiev SI (2015) Photobiological hydrogen production and artificial photosynthesis for clean energy: from bio to nanotechnologies. Photosynth Res 126(2):237–247

    Article  CAS  Google Scholar 

  • Neudeck S, Maji S, López I, Meyer S, Meyer F, Llobet A (2014) New powerful and oxidatively rugged dinuclear Ru water oxidation catalyst: Control of mechanistic pathways by tailored ligand design. J Am Chem Soc 136(1):24–27

    Article  CAS  Google Scholar 

  • Pérez-Rebolledo A, Piro OE, Castellano EE, Teixeira LR, Batista AA, Beraldo H (2006) Metal complexes of 2-benzoylpyridine semicarbazone: spectral, electrochemical and structural studies. J Mol Struct 794(1–3):18–23

    Article  Google Scholar 

  • Sauer K, Yano J, Yachandra VK (2005) X-ray spectroscopy of the Mn4Ca cluster in the water-oxidation complex of Photosystem II. Photosynth Res 85(1):73–86

    Article  CAS  Google Scholar 

  • Schilling M, Böhler M, Luber S (2018) Towards the rational design of the Py5-ligand framework for ruthenium-based water oxidation catalysts. Dalton Trans 47(31):10480–10490

    Article  CAS  Google Scholar 

  • Semin B, Davletshina L, Goryachev S, Seibert M (2021) Ca2+ effects on Fe (II) interactions with Mn-binding sites in Mn-depleted oxygen-evolving complexes of photosystem II and on Fe replacement of Mn in Mn-containing Ca-Depleted Complexes. Photosynth Res 147(2):229–237

    Article  CAS  Google Scholar 

  • Shaghaghi Z, Aligholivand M, Mohammad-Rezaei R (2021a) Enhanced water splitting through different substituted cobalt-salophen electrocatalysts. Int J Hydrogen Energy 46(1):389–402

    Article  CAS  Google Scholar 

  • Shaghaghi Z, Kouhsangini PS, Mohammad-Rezaei R (2021b) Water oxidation activity of azo-azomethine-based Ni (II), Co (II), and Cu (II) complexes. Appl Organomet Chem 35(3):e6103

    Article  CAS  Google Scholar 

  • Sheehan SW, Thomsen JM, Hintermair U, Crabtree RH, Brudvig GW, Schmuttenmaer CA (2015) A molecular catalyst for water oxidation that binds to metal oxide surfaces. Nat Commun 6(1):1–9

    Article  Google Scholar 

  • Sheldrick GM (2015) SHELXT–Integrated space-group and crystal-structure determination. Acta Crystallogr Sect A Found Adv 71(1):3–8

    Article  Google Scholar 

  • Shevchenko D, Anderlund MF, Styring S, Dau H, Zaharieva I, Thapper A (2014) Water oxidation by manganese oxides formed from tetranuclear precursor complexes: the influence of phosphate on structure and activity. Phys Chem Chem Phys 16(24):11965–11975

    Article  CAS  Google Scholar 

  • Wiechen M, Berends H-M, Kurz P (2012) Water oxidation catalysed by manganese compounds: from complexes to ‘biomimetic rocks.’ Dalton Trans 41(1):21–31

    Article  CAS  Google Scholar 

  • Yang D, Chen Y, Su Z, Zhang X, Zhang W, Srinivas K (2021) Organic carboxylate-based MOFs and derivatives for electrocatalytic water oxidation. Coord Chem Rev 428:213619

    Article  CAS  Google Scholar 

  • Yano J, Yachandra VK (2007) Oxidation state changes of the Mn4Ca cluster in photosystem II. Photosynth Res 92(3):289–303

    Article  CAS  Google Scholar 

  • Ye S, Ding C, Liu M, Wang A, Huang Q, Li C (2019) Water oxidation catalysts for artificial photosynthesis. Adv Mater 31(50):1902069

    Article  CAS  Google Scholar 

  • Zhang W, Cao R (2022) Water oxidation with polymeric photocatalysts. Chem Rev 122(6):5408–5410

    Article  CAS  Google Scholar 

  • Zhang B, Sun L (2019) Artificial photosynthesis: opportunities and challenges of molecular catalysts. Chem Soc Rev 48(7):2216–2264

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank to Imam Khomeini International University and Azarbaijan Shahid Madani University for supporting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahman Bikas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bikas, R., Shaghaghi, Z., Heshmati-Sharabiani, Y. et al. Water oxidation reaction in the presence of a dinuclear Mn(II)-semicarbohydrazone coordination compound. Photosynth Res 154, 383–395 (2022). https://doi.org/10.1007/s11120-022-00939-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-022-00939-2

Keywords

Navigation