Skip to main content

Investigation of electrocatalytic activity of a new mononuclear Mn(II) complex for water oxidation in alkaline media

Abstract

Water splitting is a promising way to alleviate the energy crisis. In nature, water oxidation is done by a tetranuclear manganese cluster in photosystem II. Therefore, the study of water oxidation by Mn complexes is attractive in water splitting systems. In this report, a new mononuclear Mn(II) complex, MnL2 (HL = (E)-3-hydroxy--(pyridin-2-ylmethylene)-2-naphthohydrazide) was prepared and characterized by spectroscopic techniques and single-crystal X-ray diffraction. Crystallographic analysis indicated that the geometry around the Mn(II) ion is distorted octahedral. The MnN4O2 coordination moiety is achieved by bounding of oxygen and two nitrogen donor atoms of two hydrazone ligands. The synthesized complex was also investigated for electrochemical water oxidation using electrochemical techniques, scanning electron microscopy, energy dispersive spectrometry, and PXRD analysis. Linear sweep voltammetry experiment showed that the modified carbon paste electrode by the complex displays high activity for water oxidation reaction with an overpotential of 565 mV at a current density of 10 mA cm−2 and Tafel slope of 105 mV dec−1 in an alkaline solution. It was found that the complex structure finally changes during the reaction and converts to Mn oxide nanoparticles which act as active catalytic species and oxidize the water.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  • Aligholivand M, Shaghaghi Z, Bikas R, Kozakiewicz A (2019) Electrocatalytic water oxidation by a Ni (II) salophen-type complex. RSC Adv 9(69):40424–40436

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ashmawy FM, McAuliffe CA, Parish RD, Tames J (1984) The photolysis of co-ordinated water in [Mn (saltm)(H2O)]2 (ClO4)2 [saltm= N, N′-propylenebis (salicylideneaminato)]. J Chem Soc Chem Commun 1:14–16

    Google Scholar 

  • Asraf MA, Ezugwu CI, Zakaria C, Verpoort F (2019) Homogeneous photochemical water oxidation with metal salophen complexes in neutral media. Photochem Photobiol Sci 18(11):2782–2791

    CAS  PubMed  Google Scholar 

  • Azadi G, Zand Z, Mousazade Y, Bagheri R, Cui J, Song Z, Bikas R, Wozniak K, Allakhverdiev SI, Najafpour MM (2019) A tetranuclear nickel (II) complex for water oxidation: meeting new challenges. Int J Hydrogen Energy 44(5):2857–2867

    CAS  Google Scholar 

  • Bikas R, Hosseini-Monfared H, Sieroń L, Gutiérrez A (2013) Synthesis, crystal structure, spectroscopic study, and magnetic behavior of the first dinuclear Mn (II) complex of hydrazone-based ligand-containing dicyanamide bridging groups. J Coord Chem 66(22):4023–4031

    CAS  Google Scholar 

  • Bikas R, Hosseini-Monfared H, Siczek M, Demeshko S, Soltani B, Lis T (2015) Synthesis, structure and magnetic properties of a tetranuclear Mn (II) complex with carbohydrazone based ligand. Inorg Chem Commun 62:60–63

    CAS  Google Scholar 

  • Bikas R, Shahmoradi E, Reinoso S, Emami M, Lezama L, Sanchiz J, Noshiranzadeh N (2019) The effect of the orientation of the Jahn-Teller distortion on the magnetic interactions of trinuclear mixed-valence Mn (II)/Mn (III) complexes. Dalton Trans 48(36):13799–13812

    CAS  PubMed  Google Scholar 

  • Bikas R, Darvishvand M, Kuncser V, Schinteie G, Siczek M, Lis T (2020) Investigation of the effect of sodium azide on the coordination mode of flexible ONO-donor hydrazone ligand in preparing manganese coordination compounds. Polyhedron 190:114751

    CAS  Google Scholar 

  • Brimblecombe R, Swiegers GF, Dismukes GC, Spiccia L (2008) Sustained water oxidation photocatalysis by a bioinspired manganese cluster. Angew Chem Int Ed 120(38):7445–7448

    Google Scholar 

  • Chen Q-F, Guo Y-H, Yu Y-H, Zhang M-T (2021a) Bioinspired molecular clusters for water oxidation. Coord Chem Rev 448:214164

    CAS  Google Scholar 

  • Chen Z-Y, Long Z-H, Wang X-Z, Zhou J-Y, Wang X-S, Zhou X-P, Li D (2021b) Cobalt-based metal-organic cages for visible-light-driven water oxidation. Inorg Chem 60(14):10380–10386

    CAS  PubMed  Google Scholar 

  • Cooper S, Calvin M (1974) Solar energy by photosynthesis: manganese complex photolysis complex. Science 185(4148):376–376

    CAS  Google Scholar 

  • CrysAlis C, CrysAlis R, CrysAlis P (2008) Oxford diffraction Ltd. Yarnton, Oxford

    Google Scholar 

  • Dismukes GC, Brimblecombe R, Felton GA, Pryadun RS, Sheats JE, Spiccia L, Swiegers GF (2009) Development of bioinspired Mn4O4− cubane water oxidation catalysts: lessons from photosynthesis. Acc Chem Res 42(12):1935–1943

    CAS  PubMed  Google Scholar 

  • Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JA, Puschmann H (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Cryst 42(2):339–341

    CAS  Google Scholar 

  • Emami M, Shahroosvand H, Bikas R, Lis T, Daneluik C, Pilkington M (2021) Synthesis, study, and application of Pd (II) hydrazone complexes as the emissive components of single-layer light-emitting electrochemical cells. Inorg Chem 60(2):982–994

    CAS  PubMed  Google Scholar 

  • Farrugia LJ (2012) WinGX and ORTEP for windows: an update. J Appl Cryst 45(4):849–854

    CAS  Google Scholar 

  • Gluz N, Christou G, Maayan G (2021) The role of the− OH groups within Mn12 clusters in electrocatalytic water oxidation. Chem Eur J 27(19):6034–6043

    CAS  PubMed  Google Scholar 

  • Guan J, Duan Z, Zhang F, Kelly SD, Si R, Dupuis M, Huang Q, Chen JQ, Tang C, Li C (2018) Water oxidation on a mononuclear manganese heterogeneous catalyst. Nat Catal 1(11):870–877

    CAS  Google Scholar 

  • Han Z, Horak KT, Lee HB, Agapie T (2017) Tetranuclear manganese models of the OEC displaying hydrogen bonding interactions: application to electrocatalytic water oxidation to hydrogen peroxide. J Am Chem Soc 139(27):9108–9111

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hocking RK, Brimblecombe R, Chang L-Y, Singh A, Cheah MH, Glover C, Casey WH, Spiccia L (2011) Water-oxidation catalysis by manganese in a geochemical-like cycle. Nat Chem 3(6):461–466

    CAS  PubMed  Google Scholar 

  • Hosseini-Monfared H, Falakian H, Bikas R, Mayer P (2013) Intramolecular hydrogen bond effect on keto-enolization of aroylhydrazone in copper (II) complexes. Inorg Chim Acta 394:526–534

    CAS  Google Scholar 

  • Hu G, Troiano JL, Tayvah UT, Sharninghausen LS, Sinha SB, Shopov DY, Mercado BQ, Crabtree RH, Brudvig GW (2021) Accessing molecular dimeric IR water oxidation catalysts from coordination precursors. Inorg Chem 60(18):14349–14356

    CAS  PubMed  Google Scholar 

  • Kanady JS, Tsui EY, Day MW, Agapie T (2011) A synthetic model of the Mn3Ca subsite of the oxygen-evolving complex in photosystem II. Science 333(6043):733–736

    CAS  PubMed  Google Scholar 

  • Kanady JS, Lin P-H, Carsch KM, Nielsen RJ, Takase MK, Goddard WA III, Agapie T (2014) Toward models for the full oxygen-evolving complex of photosystem II by ligand coordination to lower the symmetry of the Mn3CaO4 cubane: demonstration that electronic effects facilitate binding of a fifth metal. J Am Chem Soc 136(41):14373–14376

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur D, Zhang Y, Reiss KM, Mandal M, Brudvig GW, Batista VS, Gunner M (2021) Proton egress pathway during the S1–S2 transition of the oxygen evolving complex of photosystem II. bioRxiv 5:9477

    Google Scholar 

  • Kondo M, Tatewaki H, Masaoka S (2021) Design of molecular water oxidation catalysts with earth-abundant metal ions. Chem Soc Rev 50(12):6790–6831

    CAS  PubMed  Google Scholar 

  • Krawczyk P, Gurzęda B, Bachar A, Buchwald T (2020) Formation of a N2O5–graphite intercalation compound by ozone treatment of natural graphite. Green Chem 22(16):5463–5469

    CAS  Google Scholar 

  • Lan T-X, Gao W-S, Chen C-N, Wang H-S, Wang M, Fan Y-h (2018) Two tetranuclear 3d–4f heterometal complexes Mn2Ln2 (Ln= Dy, Gd): synthesis, structure, magnetism, and electrocatalytic reactivity for water oxidation. New J Chem 42(8):5798–5805

    CAS  Google Scholar 

  • Lee WT, Muñoz SB III, Dickie DA, Smith JM (2014) Ligand modification transforms a catalase mimic into a water oxidation catalyst. Angew Chem Int Ed 53(37):9856–9859

    CAS  Google Scholar 

  • Li X, Zhang X-P, Guo M, Lv B, Guo K, Jin X, Zhang W, Lee Y-M, Fukuzumi S, Nam W (2021) Identifying intermediates in electrocatalytic water oxidation with a manganese corrole complex. J Am Chem Soc 143(36):14613–14621

    CAS  PubMed  Google Scholar 

  • Limburg J, Vrettos JS, Liable-Sands LM, Rheingold AL, Crabtree RH, Brudvig GW (1999) A functional model for OO bond formation by the O2-evolving complex in photosystem II. Science 283(5407):1524–1527

    CAS  PubMed  Google Scholar 

  • Lubitz W, Chrysina M, Cox N (2019) Water oxidation in photosystem II. Photosynth Res 142(1):105–125

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maayan G, Gluz N, Christou G (2018) A bioinspired soluble manganese cluster as a water oxidation electrocatalyst with low overpotential. Nat Catal 1(1):48–54

    CAS  Google Scholar 

  • Mahdi Najafpour M, Jafarian Sedigh D, Maedeh Hosseini S, Zaharieva I (2016) Treated nanolayered Mn oxide by oxidizable compounds: a strategy to improve the catalytic activity toward water oxidation. Inorg Chem 55(17):8827–8832

    CAS  PubMed  Google Scholar 

  • Mousazade Y, Mohammadi MR, Chernev P, Bikas R, Bagheri R, Song Z, Lis T, Dau H, Najafpour MM (2018) Water oxidation by a manganese–potassium cluster: Mn oxide as a kinetically dominant “true” catalyst for water oxidation. Catal Sci Technol 8(17):4390–4398

    CAS  Google Scholar 

  • Mousazade Y, Najafpour MM, Bagheri R, Jagličić Z, Singh JP, Chae KH, Song Z, Rodionova MV, Voloshin RA, Shen J-R (2019) A manganese (II) phthalocyanine under water-oxidation reaction: new findings. Dalton Trans 48(32):12147–12158

    CAS  PubMed  Google Scholar 

  • Najafpour MM, Boghaei DM (2009) Heterogeneous water oxidation by bidentate Schiff base manganese complexes in the presence of cerium (IV) ammonium nitrate. Transit Met Chem 34(4):367–372

    CAS  Google Scholar 

  • Najafpour MM, Moghaddam AN (2012) Nano-sized manganese oxide: a proposed catalyst for water oxidation in the reaction of some manganese complexes and cerium (IV) ammonium nitrate. Dalton Trans 41(34):10292–10297

    CAS  PubMed  Google Scholar 

  • Najafpour MM, Rahimi F, Sedigh DJ, Carpentier R, Eaton-Rye JJ, Shen J-R, Allakhverdiev SI (2013) Gold or silver deposited on layered manganese oxide: a functional model for the water-oxidizing complex in photosystem II. Photosynth Res 117(1):423–429

    CAS  PubMed  Google Scholar 

  • Najafpour M, Moghaddam AN, Dau H, Zaharieva I (2014) Fragments of layered manganese oxide are the real water oxidation catalyst after transformation of molecular precursor on clay. J Am Chem Soc 136(20):7245–7248

    CAS  PubMed  Google Scholar 

  • Najafpour MM, Salimi S, Madadkhani S, Hołyńska M, Tomo T, Allakhverdiev SI (2016) Nanostructured manganese oxide on silica aerogel: a new catalyst toward water oxidation. Photosynth Res 130(1):225–235

    CAS  PubMed  Google Scholar 

  • Najafpour MM, Mehrabani S, Bagheri R, Song Z, Shen J-R, Allakhverdiev SI (2018) An aluminum/cobalt/iron/nickel alloy as a precatalyst for water oxidation. Int J Hydrogen Energy 43(4):2083–2090

    CAS  Google Scholar 

  • Najafpour MM, Zaharieva I, Zand Z, Hosseini SM, Kouzmanova M, Hołyńska M, Tranca I, Larkum AW, Shen J-R, Allakhverdiev SI (2020) Water-oxidizing complex in Photosystem II: its structure and relation to manganese-oxide based catalysts. Coord Chem Rev 409:213183

    CAS  Google Scholar 

  • Schwarz B, Forster J, Goetz MK, Yuecel D, Berger C, Jacob T, Streb C (2016) Visible-light-driven water oxidation by a molecular manganese vanadium oxide cluster. Angew Chem Int Ed 55(21):6329–6333

    CAS  Google Scholar 

  • Shaghaghi Z, Aligholivand M, Mohammad-Rezaei R (2021a) Enhanced water splitting through different substituted cobalt-salophen electrocatalysts. Int J Hydrogen Energy 46(1):389–402

    CAS  Google Scholar 

  • Shaghaghi Z, Kouhsangini PS, Mohammad-Rezaei R (2021b) Water oxidation activity of azo-azomethine-based Ni (II), Co (II), and Cu (II) complexes. Appl Organomet Chem 35(3):e6103

    CAS  Google Scholar 

  • Sheldrick GM (2008) A short history of SHELX. Acta Cryst Sect A A64(1):112–122

    Google Scholar 

  • Spek AL (2009) Structure validation in chemical crystallography. Acta Cryst Sect D D65(2):148–155

    Google Scholar 

  • Takashima T, Hashimoto K, Nakamura R (2012) Inhibition of charge disproportionation of MnO2 electrocatalysts for efficient water oxidation under neutral conditions. J Am Chem Soc 134(44):18153–18156

    CAS  PubMed  Google Scholar 

  • Valizadeh A, Bikas R, Aleshkevych P, Kozakiewicz A, Allakhverdiev SI, Najafpour MM (2021) A dinuclear iron complex as a precatalyst for water oxidation under alkaline conditions. Int J Hydrogen Energy 46(58):29896–29904

    CAS  Google Scholar 

  • Wei J, Liu Y, Ding Y, Luo C, Du X, Lin J (2014) MnO2 spontaneously coated on carbon nanotubes for enhanced water oxidation. Chem Commun 50(80):11938–11941

    CAS  Google Scholar 

  • Yan Y, Lee JS, Ruddy DA (2015) Structure-function relationships for electrocatalytic water oxidation by molecular [Mn12O12] clusters. Inorg Chem 54(9):4550–4555

    CAS  PubMed  Google Scholar 

  • Yano J, Yachandra VK (2007) Oxidation state changes of the Mn4Ca cluster in photosystem II. Photosynth Res 92(3):289–303

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Azarbaijan Shahid Madani University and Imam Khomeini International University for their financial support of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahman Bikas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 714 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shaghaghi, Z., Bikas, R., Heshmati-Sharabiani, Y. et al. Investigation of electrocatalytic activity of a new mononuclear Mn(II) complex for water oxidation in alkaline media. Photosynth Res (2022). https://doi.org/10.1007/s11120-022-00931-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11120-022-00931-w

Keywords

  • Water splitting
  • Oxygen evolution reaction
  • Heterogeneous electrocatalyst
  • Mn(II) complex