Skip to main content

The ligand-to-metal charge transfer excited state of [Re(dmpe)3]2+

Abstract

The ligand-to-metal charge transfer (LMCT) transitions of [Re(dmpe)3]2+ (dmpe = bis-1,2-(dimethylphosphino)ethane) were interrogated using UV/Vis absorbance spectroscopy, photoluminescence spectroscopy, and time-dependent density functional theory. The solvent dependence of the lowest energy charge transfer transition was quantified; no solvatochromism was observed. TD-DFT calculations reveal the dominant LMCT transition is highly symmetric and delocalized involving all phopshine ligand donors in the charge transfer, providing an understanding for the absence of solvatochromism of [Re(dmpe)3]2+.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Adams JJ, Arulsamy N, Sullivan BP et al (2015) Homoleptic Tris-Diphosphine Re(I) and Re(II) complexes and Re(II) photophysics and photochemistry. Inorg Chem 54:11136–11149. https://doi.org/10.1021/acs.inorgchem.5b01395

    CAS  Article  PubMed  Google Scholar 

  2. Alexander JJ, Gray HB (1968) Electronic structures of hexacyanometalate complexes. J Am Chem Soc 90:4260–4271. https://doi.org/10.1021/ja01018a013

  3. Bahr SR, Boudjouk P (2005) Trityl tetrakis[Ph3C]BArF borate: a new hydride abstraction reagent. J Org Chem 57:5545–5547. https://doi.org/10.1021/jo00046a048

    Article  Google Scholar 

  4. Bandy, JA, Cloke FGN, Cooper G, Day JP, Girling RB, Graham RG, Green JC, Grinter R, Perutz RN (1988) Decamethylrhenocene, (η-C Me ) Re. J Am Chem Soc 110:5039–5050. https://doi.org/10.1021/ja00223a023

  5. Beard JH, Casey J, Murmann RK (1965) The preparation and properties of ReO2(py)4 Type Ions. Inorg Chem 4:797–803. https://doi.org/10.1021/ic50028a006

    CAS  Article  Google Scholar 

  6. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100. https://doi.org/10.1063/1.1749835

    CAS  Article  Google Scholar 

  7. Becke AD (1993) A new mixing of Hartree-Fock and local density-functional theories. J Chem Phys 98:1372–1377. https://doi.org/10.1063/1.464304

    CAS  Article  Google Scholar 

  8. Casida ME, Jamorski C, Casida KC, Salahub DR (1998) Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: characterization and correction of the time-dependent local density approximation ionization threshold. J Chem Phys 108:4439–4449. https://doi.org/10.1063/1.475855

    CAS  Article  Google Scholar 

  9. Chatterjee S, Negro AS Del, Smith FN, et al 2013 Photophysics and luminescence spectroelectrochemistry of [Tc(dmpe) 3 ] +/2+ (dmpe = 1,2- bis (dimethylphosphino)ethane). J Phys Chem 117(48):12749-12758. https://doi.org/10.1021/jp406365c

  10. Chen P, Meyer TJ (1998) medium effects on charge transfer in metal complexes. Chem Rev 98:1439–1477. https://doi.org/10.1021/cr941180w

    CAS  Article  PubMed  Google Scholar 

  11. Chábera P, Liu Y, Prakash O. et al. (2017) A low-spin Fe(III) complex with 100-ps ligand-to-metal charge transfer photoluminescence. Nature 543:695–699. https://doi.org/10.1038/nature21430

  12. Choing SN, Francis AJ, Clendenning G, Schuurman MS, Sommer RD, Tamblyn I, Weare WW, Culk T (2015) Long- lived LMCT in a d vanadium(V) complex by internal conversionto a state of 3d character. J Phys Chem C 119(30):17029–17038. https://doi.org/10.1021/acs.jpcc.5b00513

  13. Del Negro AS, Seliskar CJ, Heineman WR et al (2006a) Highly oxidizing excited states of Re and Tc complexes. J Am Chem Soc 128:16494–16495. https://doi.org/10.1021/ja067114g

    CAS  Article  PubMed  Google Scholar 

  14. Dolg M, Wedig U, Stoll H, Preuss H (1987) Energy-adjusted ab initio pseudopotentials for the first row transition elements. J Chem Phys 86:866–872

    CAS  Article  Google Scholar 

  15. Esswein AJ, Nocera DG (2007) Hydrogen production by molecular photocatalysis. Chem Rev 107:4022–4047. https://doi.org/10.1021/cr050193e

    CAS  Article  PubMed  Google Scholar 

  16. Foo Lee Y, Jon RK (1994) Absorption and luminescence spectroelectrochemical characterization of a highly luminescent rhenium(II) complex. J Am Chem Soc 116:3599–3600. https://doi.org/10.1021/ja00087a056

    Article  Google Scholar 

  17. Gorelsky SI AOMix.pdf. http://www.sg-chem.net/

  18. Hush NS, Reimers JR (2006) Solvent effects on the electronic spectra of transition metal complexes. Chem Commun 100:775–786. https://doi.org/10.1021/cr980409v

    CAS  Article  Google Scholar 

  19. Kalyanasundaram K (1982) Photophysics, photochemistry and solar energy conversion with tris(bipyridyl)ruthenium(II) and its analogues. Coord Chem Rev 46:159–244. https://doi.org/10.1016/0010-8545(82)85003-0

    CAS  Article  Google Scholar 

  20. Kanso H, Clarke RM, Kochem A, Arora H, Philouze C, Jarjayes O, Storr T, Thomas F (2020) Effect of distortions on the geometric and electronic structures of one-electron oxidized vanadium(IV), copper(II), and cobalt(II)/(III) salen complexes. Inorg Chem 59:5133–5148. https://doi.org/10.1021/acs.inorgchem.0c00381

  21. Kjær KS, Nidhi K, Om P, Chábera P, Rosemann NW, Honarfar A, Gordivska O, Fredin LA, Bergquist KE, Häggström L, Ericsson T, Lindh L, Yartsev A, Styring S, Huang P, Uhlig J, Bendix J, Strand D, Sundström V, Persson P, Lomoth R, Wärnmark K (2019) Luminescence and reactivity of a charge-transfer excited iron complex with nanosecond lifetime. Science 363:249–253. https://doi.org/10.1126/science.aau7160

  22. Kirchhoff JR, Allen MR, Cheesman BV et al (1997) Electrochemistry and spectroelectrochemistry of [Re (1, 2-bis ( dimethylphosphino ) ethane ) 3 ] q. Inorganica Chim Acta 262:195–202

    CAS  Article  Google Scholar 

  23. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650–654. https://doi.org/10.1063/1.438955

    CAS  Article  Google Scholar 

  24. Kunkley H, Vogler A (2001) Excited state behavior of tetrakis(2,2,6,6-tetramethyl-3,5-heptane-dionato)cerium(IV): Emission and photoredox reaction from ligand-to-metal charge transfer states. J Photochem Photobiol A Chem 146:63–66. https://doi.org/10.1016/S1010-6030(01)00588-3

  25. Larsen CB, Wenger OS (2018) Photoredox catalysis with metal complexes made from earth abundant elements. Chem Eur J 24:2039–2058. https://doi.org/10.1002/chem.201703602

  26. Loukova GV, Huhn W, Vasiliev VP, Smirnov VA (2007) Ligand-to-metal charge transfer excited states with unprecedented luminescence yield in fluid solution. J Phys Chem A 111:4117–4121. https://doi.org/10.1021/jp0721797

    CAS  Article  PubMed  Google Scholar 

  27. Loukova GV, Milov AA, Vasiliev VP, Minkin VI (2016) Dipole moments and solvatochromism of metal complexes: principle photophysical and theoretical approach. Phys Chem Chem Phys 18:17822–17826. https://doi.org/10.1039/c6cp03348b

    CAS  Article  PubMed  Google Scholar 

  28. Marini A, Muñoz-Losa A, Biancardi A, Mennucci B (2010) What is solvatochromism? J Phys Chem B 114:17128–17135

    CAS  Article  Google Scholar 

  29. McLean AD, Chandler GS (1980) Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11-18. J Chem Phys 72:5639–5648. https://doi.org/10.1063/1.438980

    CAS  Article  Google Scholar 

  30. McCusker JK (2019) Electronic structure in the transition metal block and its implications for light harvesting. Science. 363(6426):484–488. https://doi.org/10.1126/science.aav9104

  31. Pal AK, Li C, Hanan GS, Zysman-Colman E (2018) Blue-emissive cobalt(III) complexes and their use in the photocatalytic trifluoromethylation of polycyclic aromatic hydrocarbons. Angew Chem Int Ed Engl 57(27):8027–8031. https://doi.org/10.1002/anie.201802532

  32. Paulson S, Sullivan BP, Caspar JV (1992) Luminescent ligand-to-metal charge-transfer excited states based on pentamethylcyclopentadienyl complexes of tantalum. J Am Chem Soc 114:6905–6906. https://doi.org/10.1021/ja00043a040

    CAS  Article  Google Scholar 

  33. Pfenning BW, Thompson ME, Bocarsly AB (1989) A new class of room temperature luminescent organometallic complexes: luminescence and photophysical properties of permethylscandocene chloride in fluid solution. J Am Chem Soc 111(24):8947–8948. https://doi.org/10.1021/ja00206a044

  34. Prier CK, Rankic DA, MacMillan DWC (2013) Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem Rev 113:5322–5363. https://doi.org/10.1021/cr300503r

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Qiao Y, Shelter EJ (2018) Lanthanide photocatalysis. Acc Chem Res 51:2926–2936. https://doi.org/10.1021/acs.accounts.8b00336

  36. Reichardt C (1994) Solvatochromic Dyes as Solvent Polarity Indicators. Chem Rev 94:2319–2358

    CAS  Article  Google Scholar 

  37. Reichardt C 2003 - Solvents in Organic Synthesis. In: Solvents and Solvent Effects in Organic Chemistry, 3rd edn. Wiley-VCH Publishers

  38. Romain C, Choua S, Collin JP, Heinrich M, Bailly C, Karmazin-Brelot L, Bellemin-Laponnaz S, Dagorne S (2014) Redox and luminescent properties of robust and air-stable n-heterocyclic carbene group 4 metal complexes. Inorg Chem 53:7371–7376. https://doi.org/10.1021/ic500718y

  39. Scalmani G, Frisch MJ (2010) Continuous surface charge polarizable continuum models of solvation. I General Formalism J Chem Phys. https://doi.org/10.1063/1.3359469

    Article  PubMed  Google Scholar 

  40. Shepherd RE, Hoq MF, Hoblack N, Johnson CR (1984) Solvatochromism of the LMCT transition of pentacyanoferrate(III) complexes. Inorg Chem 23:3249–3252. https://doi.org/10.1021/ic00188a043

    CAS  Article  Google Scholar 

  41. Sullivan BP (1989) Large solvatochromism of metal-to-ligand charge-transfer transitions in organometallic complexes of Re(I). J Phys Chem 93:24–26. https://doi.org/10.1021/j100338a009

    CAS  Article  Google Scholar 

  42. Tonks IA, Durrell AC, Gray HB, Bercaw JE (2012) Groups 5 and 6 terminal hydrazido(2-) complexes: N substituent effects on ligand-to-metal charge transfer energies and oxidation states. J Am Chem Soc 134:7301–7304. https://doi.org/10.1021/ja302275j

  43. Vogler A, Kunkely H (1981) Luminescence from hexacyanoruthenate(III). Inorg Chim Acta 53:215–216. https://doi.org/10.1016/S0020-1693(00)84799-4

  44. Williams DS, Korolev AV (1998) Electronic structure of luminescent d niobium and tantalum lmido compounds cis,mer-M(NR)Cl L . Inorg Chem 37:3809–3819. https://doi.org/10.1021/ic9800740

  45. Yam VWW, Lo KKW, Cheung KK (1996) A novel luminescent μ -selenido-bridged copper(I) tetramer. Inorg Chem 35:3459–3462. https://doi.org/10.1021/ic951565c

  46. Yam VW, Lam C, Fung WK, Cheung K (2001) Syntheses, photophysics, and photochemistry of trinuclear copper(I) thiolate and hexanuclear copper(I) selenolate complexes: x-ray crystal structures of [Cu6(μ- dppm)4(μ3-SePh)4](BF4)2 and [Cu6{μ-(Ph2P)2NH}4(μ3-SePh)4](BF4)2. Inorg Chem 40(14):3435–3442. https://doi.org/10.1021/ic0012322

  47. Zhang Y, Lee TS, Favale JM et al (2020) Delayed fluorescence from a zirconium(iv) photosensitizer with ligand-to-metal charge-transfer excited states. Nat Chem 12:345–352. https://doi.org/10.1038/s41557-020-0430-7

    CAS  Article  PubMed  Google Scholar 

  48. Zhang Y, Petersen L, Milsmann C (2016) A luminescent zirconium(IV) complex as a molecular photosensitizer for visible light photoredox catalysis. J Am Chem Soc 138(40):13115–13118. https://doi.org/10.1021/jacs.6b05934

Download references

Acknowledgements

This material is based on work supported by the National Science Foundation under award number CHE-1954868 (synthesis, spectroscopy, and preliminary computations) and award number CHE-1554855 (computational studies). J.L.D. acknowledges support from a Packard Fellowship for Science and Engineering. T.M.R. acknowledges support from the National Science Foundation Graduate Research Fellowship Grant No. DGE-1650116. We thank the University of North Carolina’s Department of Chemistry NMR Core Laboratory for the use of their NMR spectrometers. We thank Cole Gruninger and Kelsey Brereton for fruitful discussions and guidance.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jillian L. Dempsey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 893 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rodriguez, T.M., Deegbey, M., Jakubikova, E. et al. The ligand-to-metal charge transfer excited state of [Re(dmpe)3]2+. Photosynth Res (2021). https://doi.org/10.1007/s11120-021-00859-7

Download citation

Keywords

  • Ligand-to-metal charge transfer
  • Photophysics
  • TD-DFT
  • Charge transfer
  • Rhenium