Skip to main content
Log in

Circular dichroism and resonance Raman spectroscopies of bacteriochlorophyll b-containing LH1-RC complexes

  • Original article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The core light-harvesting complexes (LH1) in bacteriochlorophyll (BChl) b-containing purple phototrophic bacteria are characterized by a near-infrared absorption maximum around 1010 nm. The determinative cause for this ultra-redshift remains unclear. Here, we present results of circular dichroism (CD) and resonance Raman measurements on the purified LH1 complexes in a reaction center-associated form from a mesophilic and a thermophilic Blastochloris species. Both the LH1 complexes displayed purely positive CD signals for their Qy transitions, in contrast to those of BChl a-containing LH1 complexes. This may reflect differences in the conjugation system of the bacteriochlorin between BChl b and BChl a and/or the differences in the pigment organization between the BChl b- and BChl a-containing LH1 complexes. Resonance Raman spectroscopy revealed remarkably large redshifts of the Raman bands for the BChl b C3-acetyl group, indicating unusually strong hydrogen bonds formed with LH1 polypeptides, results that were verified by a published structure. A linear correlation was found between the redshift of the Raman band for the BChl C3-acetyl group and the change in LH1-Qy transition for all native BChl a- and BChl b-containing LH1 complexes examined. The strong hydrogen bonding and π–π interactions between BChl b and nearby aromatic residues in the LH1 polypeptides, along with the CD results, provide crucial insights into the spectral and structural origins for the ultra-redshift of the long-wavelength absorption maximum of BChl b-containing phototrophs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Alc :

Allochromatium

BChl:

Bacteriochlorophyll

Blc :

Blastochloris

CD:

Circular dichroism

DDM:

n-dodecyl β-D-maltopyranoside

FWHM:

Full width at half maximum

Hlr :

Halorhodospira

LH:

Light-harvesting

RC:

Reaction center

Tch :

Thermochromatium

Trv :

Thiorhodovibrio

References

  • Allen JP, Feher G, Yeates TO, Komiya H, Rees DC (1987) Structure of the reaction center from Rhodobacter sphaeroides R-26: The cofactors. Proc Natl Acad Sci USA 84:5730–5734

    Article  CAS  PubMed  Google Scholar 

  • Bolt JD, Sauer K, Shiozawa JA, Drews G (1981) Linear and circular dichroism of membranes from Rhodopseudomonas capsulata. Biochim Biophys Acta 635:535–541

    Article  CAS  PubMed  Google Scholar 

  • Canniffe DP, Hunter CN (2014) Engineered biosynthesis of bacteriochlorophyll b in Rhodobacter sphaeroides. Biochim Biophys Acta 1837:1611–1616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cogdell RJ, Scheer H (1985) Circular dichroism of light-harvesting complexes from purple photosynthetic bacteria. Photochem Photobiol 42:669–678

    Article  CAS  Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Huber R, Michel H (1985) Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Å resolution. Nature 318:618–624

    Article  CAS  PubMed  Google Scholar 

  • Friesner RA, Won Y (1989) Spectroscopy and electron transfer dynamics of the bacterial photosynthetic reaction center. Biochim Biophys Acta 977:99–122

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara M, Tasumi M (1986) Resonance Raman and infrared studies on axial coordination to chlorophylls a and b in vitro. J Phys Chem 90:250–255

    Article  CAS  Google Scholar 

  • Gardiner AT, Nguyen-Phan TC, Cogdell RJ (2020) A comparative look at structural variation among RC-LH1 'Core' complexes present in anoxygenic phototrophic bacteria. Photosynth Res 145:83–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Georgakopoulou S, Frese RN, Johnson E, Koolhaas C, Cogdell RJ, van Grondelle R, van der Zwan G (2002) Absorption and CD spectroscopy and modeling of various LH2 complexes from purple bacteria. Biophys J 82:2184–2197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Georgakopoulou S, van der Zwan G, Olsen JD, Hunter CN, Niederman RA, van Grondelle R (2006a) Investigation of the effects of different carotenoids on the absorption and CD signals of light harvesting 1 complexes. J Phys Chem B 110:3354–3361

    Article  CAS  PubMed  Google Scholar 

  • Georgakopoulou S, van Grondelle R, van der Zwan G (2006b) Explaining the visible and near-infrared circular dichroism spectra of light-harvesting 1 complexes from purple bacteria: A model study. J Phys Chem B 110:3344–3353

    Article  CAS  PubMed  Google Scholar 

  • Hayashi H, Nozawa T, Hatano M, Morita S (1981) Circular dichroism of bacteriochlorophyll a in light harvesting bacteriochlorophyll protein complexes from Chromatium vinosum. J Biochem 89:1853–1861

    Article  CAS  PubMed  Google Scholar 

  • Hayashi H, Nozawa T, Hatano M, Morita S (1982) Circular dichroism of bacteriochlorophyll a in light harvesting bacteriochlorophyll-protein complexes from Rhodopseudomonas palustris. J Biochem 91:1029–1038

    Article  CAS  PubMed  Google Scholar 

  • Hoogewerf GJ, Jung DO, Madigan MT (2003) Evidence for limited species diversity of bacteriochlorophyll b-containing purple nonsulfur anoxygenic phototrophs in freshwater habitats. FEBS Microbiol Lett 218:359–364

    Article  CAS  Google Scholar 

  • Imanishi M, Takenouchi M, Takaichi S, Nakagawa S, Saga Y, Takenaka S, Madigan MT, Overmann J, Wang-Otomo Z-Y, Kimura Y (2019) A dual role for Ca2+ in expanding the spectral diversity and stability of light-harvesting 1 reaction center photocomplexes of purple phototrophic bacteria. Biochemistry 58:2844–2852

    Article  CAS  PubMed  Google Scholar 

  • Imhoff JF (1995) Taxonomy and physiology of phototrophic purple bacteria and green sulfur bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic Photosynthetic Bacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 1–15

    Google Scholar 

  • Imhoff JF, Rahn T, Künzel S, Neulinger SC (2018) Photosynthesis is widely distributed among Proteobacteria as demonstrated by the phylogeny of PufLM reaction center proteins. Front Microbiol 8:2679

    Article  PubMed  PubMed Central  Google Scholar 

  • Kimura Y, Inada Y, Numata T, Arikawa T, Li Y, Zhang J-P, Wang Z-Y, Ohno T (2012) Metal cations modulate the bacteriochlorophyll-protein interaction in the light-harvesting 1 core complex from Thermochromatium tepidum. Biochim Biophys Acta 1817:1022–1029

    Article  CAS  PubMed  Google Scholar 

  • Kimura Y, Kawakami T, Yu L-J, Yoshimura Y, Kobayashi M, Wang-Otomo Z-Y (2015) Characterization of the quinones in purple sulfur bacterium Thermochromatium tepidum. FEBS Lett 589:1761–1765

    Article  CAS  PubMed  Google Scholar 

  • Kimura Y, Lyu S, Okoshi A, Okazaki K, Nakamura N, Ohashi A, Ohno T, Takaichi S, Madigan MT, Wang-Otomo Z-Y (2017) Effects of calcium ions on the thermostability and spectroscopic properties of the LH1-RC complex from a new thermophilic purple bacterium Allochromatium tepidum. J Phys Chem B 121:5025–5032

    Article  CAS  PubMed  Google Scholar 

  • Kuroha M, Nambu S, Hattori S, Kitagawa Y, Niimura K, Mizuno Y, Hamba F, Ishii K (2019) Chiral supramolecular nanoarchitectures from macroscopic mechanical rotations: effects on enantioselective aggregation behavior of phthalocyanines. Angew Chem Int Ed 58:18454–18459

    Article  CAS  Google Scholar 

  • Madigan MT, Resnick SM, Kempher ML, Dolnalkova AC, Takaichi S, Wang-Otomo Z-Y, Toyota A, Kurokawa K, Mori H, Tsukatani Y (2019) Blastochloris tepida, sp. nov., a thermophilic species of the bacteriochlorophyll b-containing genus Blastochloris. Arch Microbiol 201:1351–1359

    Article  CAS  PubMed  Google Scholar 

  • Nagashima KVP, Sasaki M, Hashimoto K, Takaichi S, Nagashima S, Yu L-J, Abe Y, Gotou K, Kawakami T, Takenouchi T, Shibuya Y, Yamaguchi A, Ohno T, Shen J-R, Inoue K, Madigan MT, Kimura Y, Wang-Otomo Z-Y (2017) Probing structure–function relationships in early events in photosynthesis using a chimeric photocomplex. Proc Natl Acad Sci USA 114:10906–10911

    Article  CAS  PubMed  Google Scholar 

  • Nogi T, Fathir I, Kobayashi M, Nozawa T, Miki K (2000) Crystal structures of photosynthetic reaction center and high-potential iron-sulfur protein from Thermochromatium tepidum: Thermostability and electron transfer. Proc Natl Acad Sci USA 97:13561–13566

    Article  CAS  PubMed  Google Scholar 

  • Parkes-Loach PS, Michalski TJ, Bass WJ, Smith U, Loach PA (1990) Probing the bacteriochlorophyll binding site by reconsititution of the light-harvesting complex of Rhodospirillum rubrum with bacteriochlorophyll a analogues. Biochemistry 29:2951–2960

    Article  CAS  PubMed  Google Scholar 

  • Parkes-Loach PS, Jones SM, Loach PA (1994) Probing the structure of the core light-harvesting complex (LH1) of Rhodopseudomonas viridis by dissociation and reconstitution methodology. Photosynth Res 40:247–261

    Article  CAS  PubMed  Google Scholar 

  • Philipson KD, Sauer K (1973) Comparative study of the circular dichroism spectra of reaction centers from several photosynthetic bacteria. Biochemistry 12:535–539

    Article  CAS  PubMed  Google Scholar 

  • Qian P, Siebert CA, Wang P, Canniffe DP, Hunter CN (2018) Cryo-EM structure of the Blastochloris viridis LH1-RC complex at 2.9 Å. Nature 556:203–208

    Article  CAS  PubMed  Google Scholar 

  • Resnick SM, Madigan MT (1989) Isolation and characterization of a mildly thermophilic nonsulfur purple bacterium containing bacteriochlorophyll b. FEMS Microbiol Lett 65:165–170

    Article  CAS  Google Scholar 

  • Robert B, Vermeglio A, Steiner R, Scheer H, Lutz M (1988) BChl a/b in antenna complexes of purple bacteria. In: Scheer H, Schneider S (eds) Photosynthetic Light-Harvesting Systems. Walter de Gruyter & Co., Berlin, New York, pp 355–363

    Google Scholar 

  • Robert B, Cogdell RJ, van Grondelle R (2003) The Light-harvesting system of purple bacteria. In: Green BR, Parson WW (eds) Light-Harvesting Antennas in Photosynthesis. Kluwer Academic Publishers, Dordrecht, pp 169–194

    Chapter  Google Scholar 

  • Sauer K, Austin LA (1978) Bacteriochlorophyll-protein complexes from the light-harvesting antenna of photosynthetic bacteria. Biochemistry 17:2011–2019

    Article  CAS  PubMed  Google Scholar 

  • Scheer H, Svec WA, Cope BT, Studier MH, Scott RG, Katz JJ (1974) Structure of bacteriochlorophyll b. J Am Chem Soc 96:3714–3716

    Article  CAS  Google Scholar 

  • Seto R, Takaichi S, Kurihara T, Kishi R, Honda M, Takenaka S, Tsukatani Y, Madigan MT, Wang-Otomo Z-Y, Kimura Y (2020) Lycopene-family carotenoids confer thermostability on photocomplexes from a new thermophilic bacterium. Biochemistry 59:2351–2358

    Article  CAS  PubMed  Google Scholar 

  • Steiner R, Scheer H (1985) Characterization of a B800/1020 antenna from the photosynthetic bacteria Ectothiorhodospira halochloris and Ectothiorhodospira abdelmalekii. Biochim Biophys Acta 807:278–284

    Article  CAS  Google Scholar 

  • Sturgis JN, Robert B (1997) Pigment binding-site and electronic properties in light-harvesting proteins of purple bacteria. J Phys Chem 101:7227–7231

    Article  CAS  Google Scholar 

  • Sturgis JN, Olsen JD, Robert B, Hunter CN (1997) Functions of conserved tryptophan residues of the core light-harvesting complex of Rhodobacter sphaeroides. Biochemistry 36:2772–2778

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Hirano Y, Kimura Y, Takaichi S, Kobayashi M, Miki K, Wang Z-Y (2007) Purification, characterization and crystallization of the core complex from thermophilic purple sulfur bacterium Thermochromatium tepidum. Biochim Biophys Acta—Bioenergetics 1767:1057–1063

    Article  CAS  Google Scholar 

  • Tani K, Kanno R, Makino Y, Hall M, Takenouchi M, Imanishi M, Yu L-J, Overmann J, Madigan MT, Kimura Y, Mizoguchi A, Humbel BM, Wang-Otomo Z-Y (2020) Cryo-EM structure of a Ca2+-bound photosynthetic LH1-RC complex containing multiple αβ-polypeptides. Nat Commun 11:4955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukatani Y, Harada J, Nomata J, Yamamoto H, Fujita Y, Mizoguchi T, Tamiaki H (2015) Rhodobacter sphaeroides mutants overexpressing chlorophyll a oxidoreductase of Blastochloris viridis elucidate functions of enzymes in late bacteriochlorophyll biosynthetic pathways. Sci Rep 5:9741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uyeda U, Williams JC, Roman M, Mattioli TA, Allen JP (2010) The influence of hydrogen bonds on the electronic structure of light-harvesting complexes from photosynthetic bacteria. Biochemistry 49:1146–1159

    Article  CAS  PubMed  Google Scholar 

  • Visscher RW, Nunn R, Calkoen F, van Mourik F, Hunter CN, Rice DW, van Grondelle R (1992) Spectroscopic characterization of B820 subunits from light-harvesting complex I of Rhodospirillum rubrum and Rhodobacter sphaeroides prepared with the detergent n-octyl-rac-2,3-dipropylsulfoxide. Biochim Biophys Acta 1100:259–266

    Article  Google Scholar 

  • Visschers RW, Chang MC, van Mourik F, Parkes-Loach PS, Heller BA, Loach PA, van Grondelle R (1991) Fluorescence polarization and low-temperature absorption spectroscopy of a subunit form of light-harvesting complex I from purple photosynthetic bacteria. Biochemistry 30:5734–5742

    Article  CAS  PubMed  Google Scholar 

  • Wang Z-Y, Muraoka Y, Shimonaga M, Kobayashi M, Nozawa T (2002) Selective detection and assignment of the solution NMR signals of bacteriochlorophyll a in a reconstituted subunit of a light-harvesting complex. J Am Chem Soc 124:1072–1078

    Article  CAS  PubMed  Google Scholar 

  • Yu L-J, Suga M, Wang-Otomo Z-Y, Shen J-R (2018) Structure of photosynthetic LH1-RC supercomplex at 1.9 Å resolution. Nature 556:209–213

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ms. Madoka Yamashita of Kindai University for her experimental assistance, JASCO Corporation (Japan) for measurements of CD spectra, Ms. Satoko Suzuki, Mr. Yoshiro Kondo and Ms. Miwako Kobayashi of JASCO Corporation for assistance in CD measurements, Kao Corporation for providing detergent LDAO. This work was supported in part by Grants-in-aid for Scientific Research (C) (19K06563) to Y.K., JSPS KAKENHI Grant Numbers JP16H04174, JP18H05153, JP20H05086 and JP20H02856, Takeda Science Foundation, the Kurata Memorial Hitachi Science and Technology Foundation, Japan to Z.-Y.W.-O. and the National Key R&D Program of China (No. 2019YFA0904600) to L.-J. Y.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. Kimura or Z.-Y. Wang-Otomo.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding authors state that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kimura, Y., Yamashita, T., Seto, R. et al. Circular dichroism and resonance Raman spectroscopies of bacteriochlorophyll b-containing LH1-RC complexes. Photosynth Res 148, 77–86 (2021). https://doi.org/10.1007/s11120-021-00831-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-021-00831-5

Keywords

Navigation