Skip to main content
Log in

Time- and reduction-dependent rise of photosystem II fluorescence during microseconds-long inductions in leaves

  • Original article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Lettuce (Lactuca sativa) and benth (Nicotiana benthamiana) leaves were illuminated with 720 nm background light to mix S-states and oxidize electron carriers. Green-filtered xenon flashes of different photon dose were applied and O2 evolution induced by a flash was measured. After light intensity gradient across the leaf was mathematically considered, the flash-induced PSII electron transport (= 4·O2 evolution) exponentially increased with the flash photon dose in any differential layer of the leaf optical density. This proved the absence of excitonic connectivity between PSII units. Time courses of flash light intensity and 680 nm chlorophyll fluorescence emission were recorded. While with connected PSII the sigmoidal fluorescence rise has been explained by quenching of excitation in closed PSII by its open neighbors, in the absence of connectivity the sigmoidicity indicates gradual rise of the fluorescence yield of an individual closed PSII during the induction. Two phases were discerned: the specific fluorescence yield immediately increased from Fo to 1.8Fo in a PSII, whose reaction center became closed; fluorescence yield of the closed PSII was keeping time-dependent rise from 1.8Fo to about 3Fo, approaching the flash fluorescence yield Ff = 0.6Fm during 40 μs. The time-dependent fluorescence rise was resolved from the quenching by 3Car triplets and related to protein conformational change. We suggest that QA reduction induces a conformational change, which by energetic or structural means closes the gate for excitation entrance into the central radical pair trap—efficiently when QB cannot accept the electron, but less efficiently when it can.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

Chl:

Chlorophyll

DCMU:

3-(3,4-Dichlorophenyl)-1,1-dimethylurea

ETC:

Electron transport chain

ETR:

Electron transport rate

FI:

Fluorescence induction

F m :

Maximum fluorescence yield at the end of a saturation pulse

F f :

Fluorescence yield after a single-turnover flash

FR:

Far-red light

FRR:

Fast flash repetition rate method

LHCII:

Light-harvesting complex II

MTP:

Multiple-turnover pulse

PAM:

Pulse amplitude modulation

PFD, PAD:

Photon flux density, incident and absorbed

Pheo:

Pheophytin

PQ, PQH2 :

Plastoquinone and plastoquinol

PSI, PSII:

Photosystem I and photosystem II

P680:

Six-Chl complex in reaction center

Q A :

Primary quinone acceptor of PSII

Q B :

Secondary quinone acceptor of PSII

Specific yield:

Fluorescence yield of an individual PSII

STF:

Single-turnover flash

References

  • Amarnath K, Bennett DI, Schneider AR, Fleming GR (2016) Multiscale model of light harvesting by photosystem II in plants. Proc Natl Acad Sci USA 113:1156–1161

    CAS  PubMed  Google Scholar 

  • Baxter RHG, Ponomarenko N, Vukica Š, Pahl R, Moffat K, Norris JR (2004) Time-resolved crystallographic studies of light-induced structural changes in the photosynthetic reaction center. Proc Natl Acad Sci USA 101:5982–5987

    CAS  PubMed  Google Scholar 

  • Belyaeva NE, Pashchenko VZ, Renger G, Riznichenko GY, Rubin AB (2006) Application of a photosystem II model for analysis of fluorescence induction curves in the 100 ns to 10 s time domain after excitation with a saturating light pulse. Biophysics 51:860–872

    Google Scholar 

  • Belyaeva NE, Schmitt F-J, Paschenko VZ, Riznichenko GY, Rubin AB, Renger G (2014) Model based analysis of transient fluorescence yield induced by actinic laser flashes in spinach leaves and cells of green alga Chlorella pyrenoidosa Chick. Plant Physiol Biochem 77:49–59

    CAS  PubMed  Google Scholar 

  • Broess K, Trinkunas G, van der Wej-de Wit CD, Dekker JP, van Hock A, van Amerongen H (2006) Excitation energy transfer and charge separation in photosystem II membranes revisited. Biophys J 91:3776–3786

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cafarri S, Broess K, Croce R, van Amerongen H (2011) Excitation energy tranfer and trapping in higher plant photosystem II complexes with different antenna sizes. Biophys J 100:2094–2103

    Google Scholar 

  • Christen G, Reifarth F, Renger G (1998) On the origin of the '35-µs kinetics' of P680+• reduction in photosystem II with an intact water oxidizing complex. FEBS Lett 429:49–52

    CAS  PubMed  Google Scholar 

  • Christen G, Seeliger A, Renger G (1999) P680+• reduction kinetics and redox transition probability of the water oxidizing complex as a function of pH and H/D isotope exchange in spinach thylakoids. Biochemistry 38:6082–6092

    CAS  PubMed  Google Scholar 

  • de Wijn R, van Gorkom HJ (2001) Kinetics of electron transfer from QA to QB in photosystem II. Biochemistry 40:11912–11922

    PubMed  Google Scholar 

  • Den Hollander WTF, Bakker JGC, van Grondelle R (1983) Trapping, loss and annihilation of excitations in a photosynthetic system I Theoretical aspects. Biochem Biophys Acta 725:492–507

    Google Scholar 

  • Doschek WW, Kok B (1972) Photon trapping in photosystem II of photosynthesis. Biophys J 12:832–838

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ermler U, Fritzsch G, Buchanan SK, Michel H (1994) Structure of the photosynthetic reaction center from Rhodobacter sphaeroides at 2.65 Å resolution: Cofactors and protein-cofactor interactions. Structure 2:925–936

    CAS  PubMed  Google Scholar 

  • Evans J (1999) Leaf anatomy enables more equal access to light and CO2 between chloroplasts. New Phytol 143:93–104

    Google Scholar 

  • Evans JR (1995) Carbon fixation profiles do reflect light absorption profiles in leaves. Aust J Plant Physiol 22:865–873

    CAS  Google Scholar 

  • France LL, Geacintov NE, Breton J, Valkunas L (1992) The dependence of the degrees of sigmoidicities of fluorescence induction curves in spinach chloroplasts on the duration of actinic pulses in pump-probe experiments. Biochim Biophys Acta 1101:105–119

    CAS  Google Scholar 

  • Gates C, Ananyev G, Dismukes C (2020) Realtime kinetics of the light driven steps of photosynthetic water oxidation in living organisms by “stroboscopic” fluorometry. Biochim Biophys Acta 1861:148212

    CAS  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    CAS  Google Scholar 

  • Goushcha AO, Holzwarth AR, Kharkyanen VN (1999) Self-regulation phenomenon of electron-conformational transitions in biological electron transfer under nonequilibrium conditions. Phys Rev E 59:3444–3452

    CAS  Google Scholar 

  • Grieco M, Suorsa M, Jajoo A, Tikkanen M, Aro E-M (2015) Light-harvesting II antenna trimers connect energetically the entire photosynthetic machinery—including both photosystems II and I. Biochim Biophys Acta 1847:607–619

    CAS  PubMed  Google Scholar 

  • Groot M-L, Peterman EJG, van Stokkum IHM, Dekker JP, van Grondelle R (1995) Triplet and fluorescing states of the CP47 antenna complex of photosystem II studied as a function of temperature. Biophysical J 68:281–290

    CAS  Google Scholar 

  • Gruber JM, Chmeliov J, Krüger TPJ, Valkunas L, van Grondelle R (2015) Singlet–triplet annihilation in single LHCII complexes. Phys Chem Chem Phys 17:19844–19853

    PubMed  Google Scholar 

  • Holzwarth AR, Müller MG, Reus M, Nowaczyk M, Sander J, Rögner M (2006) Kinetics and mechanism of electron transfer in intact photosystem II and in the isolated reaction center: pheophytin is the primary electron acceptor. Proc Natl Acad Sci USA 103:6895–6900

    CAS  PubMed  Google Scholar 

  • Johnson DM, Smith WK, Vogelmann TC, Brodersen CR (2005) Leaf architecture and direction of incident light influence mesophyll fluorescence profiles. Am J Bot 92(9):1425–1431

    PubMed  Google Scholar 

  • Joliot A, Joliot P (1964) Étude cinétique de la réaction photochimique libérant l'oxygène au cours de la photosynthése. Comptes Rendus Acad Sci Paris 258:4622–4625

    CAS  Google Scholar 

  • Joliot P, Bennoun P, Joliot A (1973) New evidence supporting energy transfer between photosynthetic units. Biochim Biophys Acta 305:317–328

    CAS  PubMed  Google Scholar 

  • Keuper HJK, Sauer K (1989) Effect of photosystem II reaction center closure on nanosecond fluorescence relaxation kinetics. Photosynth Res 20:85–103

    CAS  PubMed  Google Scholar 

  • Koblížek M, Kaftan D, Nedbal L (2001) On the relationship between the non-photochemical quenching of the chlorophyll fluorescence and the photosystem II light harvesting efficiency. A repetitive flash fluorescence induction study. Photosynth Res 68:141–152

    PubMed  Google Scholar 

  • Kolber Z, Prasil O, Falkowski PG (1998) Measurements of variable chlorophyll fluorescence using fast repetition rate technique. I. Defining methodology and experimental protocols. Biochim Biophys Acta 1367:88–106

    CAS  PubMed  Google Scholar 

  • Kühn P, Eckert H-J, Eichler HJ, Renger G (2004) Analysis of the P680+. reduction pattern and its temperature dependence in oxygen-evolving PS II core complexes from thermophilic cyanobacteria and higher plants. Phys Chem Chem Phys 6:4838–4843

    Google Scholar 

  • Laisk A, Eichelmann H, Oja V (2012) Oxygen evolution and chlorophyll fluorescence from multiple turnover light pulses: charge recombination in photosystem II in sunflower leaves. Photosynth Res 113:145–155

    CAS  PubMed  Google Scholar 

  • Laisk A, Eichelmann H, Oja V (2015) Oxidation of plastohydroquinone by photosystem II and by dioxygen in leaves. Biochim Biophys Acta 1847:565–575

    CAS  PubMed  Google Scholar 

  • Laisk A, Oja V (1998) Dynamic gas exchange of leaf photosynthesis Measurement and interpretation. CSIRO, Canberra

    Google Scholar 

  • Laisk A, Oja V (2013) Thermal phase and excitonic connectivity in fluorescence induction. Photosynth Res 117:431–448. https://doi.org/10.1007/s11120-013-9915-1

    Article  CAS  PubMed  Google Scholar 

  • Laisk A, Oja V (2018) Kinetics of photosystem II electron transport: a mathematical analysis based on chlorophyll fluorescence induction. Photosynth Res 136:63–82. https://doi.org/10.1007/s11120-017-0439-y

    Article  CAS  PubMed  Google Scholar 

  • Laisk A, Oja V (2020) Variable fluorescence of closed photochemical reaction centers. Photosyths Res. https://doi.org/10.1007/s11120-020-00712-3):335-346

    Article  Google Scholar 

  • Laisk A, Oja V, Eichelmann H, Dall’Osto L (2014) Action spectra of photosystems II and I and quantum yield of photosynthesis in leaves in State 1. Biochim Biophys Acta 1837:315–325

    CAS  PubMed  Google Scholar 

  • Laisk A, Oja V, Rasulov B, Rämma H, Eichelmann H, Kasparova I, Pettai H, Padu E, Vapaavuori E (2002) A computer-operated routine of gas exchange and optical measurements to diagnose photosynthetic apparatus in leaves. Plant Cell Env 25:923–943

    CAS  Google Scholar 

  • Lambrev PH, Schmitt F-J, Kussin S, Schoengen M, Várkonyi S, Eichler HJ, Garab G, Renger G (2011) Functional domain size in aggregates of light-harvesting complex II and thylakoid membranes. Biochim Biophys Acta 1807:1022–1031

    CAS  PubMed  Google Scholar 

  • Ley AC, Mauzerall DC (1982) Absolute absorption cross-sections for photosystem II and the minimum quantum requirement for photosynthesis in Chlorella vulgaris. Biochim Biophys Acta 680:95–106

    CAS  Google Scholar 

  • Ley AC, Mauzerall DC (1986) The extent of energy transfer among photosystem II reaction centers in chlorella. Biochem Biophys Acta 850:234–248

    CAS  Google Scholar 

  • Magyar M, Sipka G, Kovács L, Ughy B, Zhu Q, Han G, Špunda V, Lambrev PH, Shen J-R, Garab G (2018) Rate-limiting steps in the dark-to-light transition of photosystem II-revealed by chlorophyll-a fluorescence induction. Sci Rep 8:2755. https://doi.org/10.1038/s41598-41018-21195-41592

    Article  PubMed  PubMed Central  Google Scholar 

  • Malkin S, Armond PA, Mooney HA, Fork DC (1981) Photosystem II photosynthetic unit sizes from fluorescence induction in Leaves Correlation to photosynthetic capacity. Plant Physiol 67:570–579

    CAS  PubMed  PubMed Central  Google Scholar 

  • Melis A, Homann PH (1975) Kinetic analysis of fluorescence induction in 3-(3,4-dichlorophenyl)-1,1-dimethylurea poisoned chloroplasts. Photochem Photobiol 21:431–437

    CAS  Google Scholar 

  • Melis A, Homann PH (1976) Heterogeneity of the photochemical centers in system II of chloroplasts. Photochem Photobiol 23:343–350

    CAS  PubMed  Google Scholar 

  • Moise N, Moya I (2004) Correlation between lifetime heterogeneity and kinetics heterogeneity during chlorophyll fluorescence induction in leaves: 1. Mono-frequency phase and modulation analysis reveals a conformational change of a PSII pigment complex during the IP thermal phase. Biochim Biophys Acta 1657:33–46

    CAS  PubMed  Google Scholar 

  • Neubauer C, Schreiber U (1987) The polyphasic rise of chlorophyll fluorescence upon onset of strong continuous illumination: I. Saturation characteristics and partial control by the photosystem II acceptor side. Z Naturforschung 42:123–131

    Google Scholar 

  • Oja V, Eichelmann H, Anijalg A, Rämma H, Laisk A (2010) Equilibrium or disequilibrium? A dual-wavelength investigation of photosystem I donors. Photosynth Res. https://doi.org/10.1007/s11120-010-9534-z):153-166

    Article  PubMed  Google Scholar 

  • Oja V, Eichelmann H, Laisk A (2011) Oxygen evolution from single- and multiple-turnover light pulses: temporal kinetics of electron transport through PSII in sunflower leaves. Photosynth Res 110:99–109

    CAS  PubMed  Google Scholar 

  • Oja V, Laisk A (2000) Oxygen yield from single turnover flashes in leaves:non-photochemical excitation quenching and the number of active PSII. Biochim Biophys Acta 1460(2–3):291–301

    CAS  PubMed  Google Scholar 

  • Oja V, Laisk A (2012) Photosystem II antennae are not energetically connected: evidence based on flash-induced O2 evolution and chlorophyll fluorescence in sunflower leaves. Photosynth Res 114:15–28

    CAS  PubMed  Google Scholar 

  • Osmond B, Chow WS, Pogson BJ, Robinson SA (2019) Probing functional and optical cross-sections of PSII in leaves during state transitions using fast repetition rate light induced fluorescence transients. Funct Plant Biol. https://doi.org/10.1071/FP18054

    Article  PubMed  Google Scholar 

  • Osmond B, Chow WS, Wyber R, Zavafer A, Keller B, Pogson BJ, Robinson SA (2017) Relative functional and optical absorption cross-sections of PSII and other photosynthetic parameters monitored in situ, at a distance with a time resolution of a few seconds, using a prototype light induced fluorescence transient (LIFT) device. Funct Plant Biol: https://doi.org/10.1071/FP17024

    Article  Google Scholar 

  • Ostroumov EE, Götze JP, Reus M, Lambrev PH, Holzwarth AR (2020) Characterization of fluorescent chlorophyll charge-transfer states as intermediates in the excited state quenching of light-harvesting complex II. Photosynth Res 144:171–193

    CAS  PubMed  Google Scholar 

  • Paillotin G, Geactinov NE, Breton J (1983) A master equation theory of fluorescence induction, photochemical yield, and singlet-triplet exciton quenching in photosynthetic systems. Biophys J 44:65–77

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peterman EJG, Dukker FM, van Grondelle R, van Amerongen H (1995) Chlorophyll a and carotenoid triplet states in light-harvesting complex II of higher plants. Biophysical J 69:2670–2678

    CAS  Google Scholar 

  • Peterson RB, Oja V, Eichelmann H, Bichele I, Dall'Osto L, Laisk A (2014) Fluorescence F0 of photosystems II and I in developing C3 and C4 leaves, and implications on regulation of excitation balance. Photosynth Res 122:41–56

    CAS  PubMed  Google Scholar 

  • Prášil O, Kolber ZS, Falkowski PG (2018) Control of the maximal chlorophyll fluorescence yield by the QB binding site. Photosynthetica 56:150–162

    Google Scholar 

  • Richter T, Fukshansky L (1996) Optics of a bifacial leaf. 1. A novel combined procedure for deriving the optical parameters. Photochem Photobiol 63:507–516

    CAS  Google Scholar 

  • Samson G, Prášil O, Yaakoubd B (1999) Photochemical and thermal phases od chlorophyll a fluorescence. Photosynthetica 37:163–182

    CAS  Google Scholar 

  • Schansker G, To'th S, Kova'cs L, Holzwarth AR, Garab G (2011) Evidence for a fluorescence yield change driven by a light-induced conformational change within photosystem II during the fast chlorophyll a fluorescence rise. Biochim Biophys Acta 1807:1032–1043

    CAS  PubMed  Google Scholar 

  • Schansker G, Tóth SC, Holzwarth AR, Garab G (2014) Chlorophyll a fluorescence: beyond the limits of the QA model. Photosynth Res 120:43–58

    CAS  PubMed  Google Scholar 

  • Schatz G, Brock H, Holzwarth AR (1987) Picosecond kinetics of fluorescence and absorbance changes in photosystem II particles excited at low photon density. Proc Natl Acad Sci USA 84:8414–8418

    CAS  PubMed  Google Scholar 

  • Schatz GH, Brock H, Holzwarth AR (1988) Kinetic and energetic model for the primary processes in photosystem II. Biophys J 54:397–405

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schödel R, Irrgang K-D, Voigt J, Renger G (1999) Quenching of chlorophyll fluorescence by triplets in solubilized light-harvesting complex II (LHCII). Biophysical J 76:2238–2248

    Google Scholar 

  • Schreiber U, Klughammer C, Schansker G (2019) Rapidly reversible chlorophyll fluorescence quenching induced by pulses of supersaturating light in vivo. Photosynth Res 142:35–50

    CAS  PubMed  Google Scholar 

  • Schreiber U, Krieger A (1996) Two fundamentally different types of variable chlorophyll fluorescence in vivo. FEBS Lett 397:131–135

    CAS  PubMed  Google Scholar 

  • Schreiber U, Neubauer C (1987) The polyphasic rise of chlorophyll fluorescence upon onset of strong continous illumination: II. Partial control by the photosystem II donor side and possible ways of interpretation. Z Naturforsch 42:132–141

    Google Scholar 

  • Siegbahn PE (2008) A structure-consistent mechanism for dioxygen formation in photosystem II. Chemistry 14:8290–8302

    CAS  PubMed  Google Scholar 

  • Sipka G, Müller P, Brettel K, Magyar M, Kovács L, Zhu Q, Xiao Y, Han G, Lambrev PH, Shen J-R, Garab G (2019) Redox transients of P680 associated with the incremental chlorophyll-a fluorescence yield rises elicited by a series of saturating flashes in diuron-treated photosystem II core complex of Thermosynechococcus vulcanus. Physiol Plantarum 166:22–32

    CAS  Google Scholar 

  • Standfuss J (2019) Membrane protein dynamics studied by X-ray lasers – or why only time will tell. Curr Opin Struct Biol 57:63–71

    CAS  PubMed  Google Scholar 

  • Steffen R, Christen G, Renger G (2001) Time-resolved monitoring of flash-induced changes of fluorescence quantum yield and decay of delayed light emission in oxygen-evolving photosynthetic organisms. Biochemistry 40:173–180

    CAS  PubMed  Google Scholar 

  • Steffen R, Eckert H-J, Kelly AA, Dörmann PG, Renger G (2005) Investigations on the reaction pattern of photosystem II in leaves from Arabidopsis thaliana by time-resolved fluorometric analysis. Biochemistry 44:3123–3132

    CAS  PubMed  Google Scholar 

  • Stirbet A (2013) Excitonic connectivity between photosystem II units: what is it, and how to measure it? Photosynth Res. https://doi.org/10.1007/s11120-013-9863-9:inpress

    Article  PubMed  Google Scholar 

  • Strasser RJ, Govindjee (1991) The F0 and the O-J-I-P fluorescence rise in higher plants and algae. In: Brown JH, AA Myers (eds) Regulation of chloroplast biogenesis. Plenum Press, New York, pp 423–426

  • Suga M, Akita F, Sugahara M, Kubo M, Nakajima Y, Nakane T, Yamashita K, Umena Y, Nakabayashi M, Yamane T, Nakano T, Suzuki M, Masuda T, Inoue S, Kimura T, Nomura T, Yonekura S, Yu L-J, Sakamoto T, Motomura T, Chen J-H, Kato Y, Noguchi T, Tono K, Joti Y, Kameshima T, Hatsui T, Nango E, Tanaka R, Naitow H, Matsuura Y, Yamashita A, Yamamoto M, Nureki O, Yabashi M, Ishikawa T, Iwata S, Shen J-R (2017) Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL. Nature 543:131–135

    CAS  PubMed  Google Scholar 

  • Sušila P, Lazár D, Ilik P, Tomek P, Nauš P (2004) The gradient of exciting radiation within a sample affects the relative height of steps in the fast chlorophyll a fluorescence rise. Photosynthetica 42:161–172

    Google Scholar 

  • Szczepaniak M, Sander J, Nowaczyk M, Müller MG, Rögner M, Holzwarth AR (2009) Charge separation, stabilization, and protein relaxation in photosystem II core particles with closed reaction center. Biophys J 96:621–631

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tóth SZ, Schansker G, Strasser RJ (2005) In intact leaves, the maximum fluorescence level (FM) is independent of the redox state of the plastoquinone pool: a DCMU-inhibition study. Biochim Biophys Acta 1708:275–282

    PubMed  Google Scholar 

  • Valkunas L, Geacintov NE, France L, Breton J (1991) The dependence of the shapes of fluorescence induction curves in chloroplasts on the duration of illumination pulses. Biophys J 59:397–408

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Grondelle R, Duysens LN (1980) On the quenching of the fluorescence yield in photosynthetic systems. Plant Physiol 65:751–754

    PubMed  PubMed Central  Google Scholar 

  • Vogelmann TC, Evans JR (2002) Profiles of light absorption and chlorophyll within spinach leaves from chlorophyll fluorescence. Plant, Cell Environ 25:1313–1323

    Google Scholar 

  • Vogelmann TC, Han T (2000) Measurement of gradients of absorbed light in spinach leaves from chlorophyll fluorescence profiles. Plant Cell Environ 23(12):1303–1311

    CAS  Google Scholar 

  • Vredenberg W, Bulychev AA (2002) Photo-electrochemical control of photosystem II chlorophyll f luorescence in vivo. Bioelectrochemistry 57:123–128

    CAS  PubMed  Google Scholar 

  • Vredenberg W, Durchan M, Prasil O (2007) On the chlorophyll a fluorescence yield in chloroplasts upon excitation with twin turnover flashes (TTF) and high frequency flash trains. Photosynth Res 93:183–192

    CAS  PubMed  Google Scholar 

  • Wraight CA, Gunner MR (2009) The acceptor quinones of purple photosynthetic bacteria — structure and spectroscopy. In: Hunter CN, Daldal F, Thurnauer MC, Beatty JT (eds) The purple phototrophic bacteria. Springer, Berlin, pp 379–405

    Google Scholar 

Download references

Acknowledgements

Lettuce was a gift by R. Külasepp and E. Feldmann from Grüne Fee Tartu, benth plants were provided by Dr. Yuh-Shuh Wang, Tartu University. The LeCroy oscilloscope was made available by prof. A. Aabloo, Tartu University.

Funding

The project was financed by University of Tartu (basic funding), Institute of Technology, and by Estonian Academy of Science (A.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agu Laisk.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oja, V., Laisk, A. Time- and reduction-dependent rise of photosystem II fluorescence during microseconds-long inductions in leaves. Photosynth Res 145, 209–225 (2020). https://doi.org/10.1007/s11120-020-00783-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-020-00783-2

Keywords

Navigation