Skip to main content
Log in

Q-band hyperchromism and B-band hypochromism of bacteriochlorophyll c as a tool for investigation of the oligomeric structure of chlorosomes of the green photosynthetic bacterium Chloroflexus aurantiacus

  • Original article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Chlorosomes of green photosynthetic bacteria are the most amazing example of long-range ordered natural light-harvesting antennae. Chlorosomes are the largest among all known photosynthetic light-harvesting structures (~ 104–105 pigments in the aggregated state). The chlorosomal bacteriochlorophyll (BChl) c/d/e molecules are organized via self-assembly and do not require proteins to provide a scaffold for efficient light harvesting. Despite numerous investigations, a consensus regarding the spatial structure of chlorosomal antennae has not yet been reached. In the present work, we studied hyperchromism/hypochromism in the chlorosomal BChl c Q/B absorption bands of the green photosynthetic bacterium Chloroflexus (Cfx.) aurantiacus. The chlorosomes were isolated from cells grown under different light intensities and therefore, as we discovered earlier, they had different sizes of both BChl c antennae and their unit building blocks. We have shown experimentally that the Q-/B-band hyperchromism/hypochromism is proportional to the size of the chlorosomal antenna. We explained theoretically these findings in terms of excitonic intensity borrowing between the Q and B bands for the J-/H-aggregates of the BChls. The theory developed by Gülen (Photosynth Res 87:205–214, 2006) showed the dependence of the Q-/B-band hyperchromism/hypochromism on the structure of the aggregates. For the model of exciton-coupled BChl c linear chains within a unit building block, the theory predicted an increase in the hyperchromism/hypochromism with the increase in the number of molecules per chain and a decrease in it with the increase in the number of chains. It was previously shown that this model ensured a good fit with spectroscopy experiments and approximated the BChl c low packing density in vivo. The presented experimental and theoretical studies of the Q-/B-band hyperchromism/hypochromism permitted us to conclude that the unit building block of Cfx. aurantiacus chlorosomes comprises of several short BChl c chains.

This conclusion is in accordance with previous linear and nonlinear spectroscopy studies on Cfx. aurantiacus chlorosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

BChl:

Bacteriochlorophyll

Cfx :

Chloroflexus

CMC:

Chlorosome-membrane complexes

Cba :

Chlorobaculum

OD:

Optical density

References

  • Arellano J, Melo T, Borrego C, Garcia-Gil J, Naqvi K (2000) Nanosecond laser photolysis studies of chlorosomes and artificial aggregates containing bacteriochlorophyll e: evidence for the proximity of carotenoids and bacteriochlorophyll a in chlorosomes from Chlorobium phaeobacteroides strain CL1401. Photochem Photobiol 72:669–675

    CAS  PubMed  Google Scholar 

  • Carbonera D, Bordignon E, Giacometti G, Agostini G, Vianelli A, Vannini C (2001) Fluorescence and absorption detected magnetic resonance of chlorosomes from green bacteria Chlorobium tepidum and Chloroflexus aurantiacus. A comparative study. J Phys Chem B 105:246–255

    CAS  Google Scholar 

  • Castenholz RW (1969) Thermophilic blue-green algae and the thermal environment. Bacteriol Rev 33:476–504

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clayton RK (1980) Photosynthesis: physical mechanisms and chemical patterns. Cambridge University Press, Cambridge

    Google Scholar 

  • DeVoe H, Tinoco I Jr (1962) The hypochromism of helical polynucleotides. J Mol Biol 4:518–527

    CAS  PubMed  Google Scholar 

  • Didraga C, Knoester J (2003) Absorption and dichroism spectra of cylindrical J aggregates and chlorosomes of green bacteria. J Lumin 102:60–66

    Google Scholar 

  • Dracheva T, Taisova A, Fetisova Z (1998) Circular dichroism spectroscopy as a test for the chlorosome antenna structure. In: Garab G (ed) Photosynthesis: mechanisms and effects, vol 1. Kluwer Academic Publishers, Dordrecht, pp 129–132

    Google Scholar 

  • Egawa A, Fujiwara T, Mizoguchi T, Kakitani Y, Koyama Y, Akutsu H (2007) Structure of the light-harvesting bacteriochlorophyll c assembly in chlorosomes from Chlorobium limicola determined by solid-state NMR. Proc Natl Acad Sci USA 104(3):790–795

    CAS  PubMed  Google Scholar 

  • Fetisova Z (2004) Survival strategy of photosynthetic organisms. 1. Variability of the extent of light-harvesting pigment aggregation as a structural factor optimizing the function of oligomeric photosynthetic antenna model calculations. Mol Biol (Mosk) 38:434–440

    CAS  Google Scholar 

  • Fetisova Z, Fok M (1984) Optimization routes for the transformation of light energy in primary acts of photosynthesis. I. The necessity of structure optimization for photosynthetic unit and method for the calculation of its efficiency. Mol Biol (Mosk) 18:1354–1359

    Google Scholar 

  • Fetisova Z, Kharchenko S, Abdourakhmanov I (1986) Strong orientational ordering of the near-infrared transition moment vectors of light-harvesting antenna bacterioviridin in chromatophores of the green photosynthetic bacterium Chlorobium limicola. FEBS Lett 199:234–236

    CAS  Google Scholar 

  • Fetisova Z, Freiberg A, Timpmann K (1988) Long-range molecular order as an efficient strategy for light harvesting in photosynthesis. Nature (London) 334:633–634

    CAS  Google Scholar 

  • Fetisova Z, Shibaeva L, Fok M (1989) Biological expedience of oligomerization of chlorophyllous pigments in natural photosynthetic systems. J Theor Biol 140:167–184

    CAS  Google Scholar 

  • Fetisova Z, Mauring K (1992) Experimental evidence of oligomeric organization of antenna bacteriochlorophyll c in green bacterium Chloroflexus aurantiacus by spectral hole burning. FEBS Lett 307:371–374

    CAS  PubMed  Google Scholar 

  • Fetisova Z, Mauring K (1993) Spectral hole burning study of intact cells of green bacterium Chlorobium limicola. FEBS Lett 323:159–162

    CAS  PubMed  Google Scholar 

  • Fetisova Z, Mauring K, Taisova A (1994) Strongly exciton coupled BChl e chromophore system in chlorosomal antenna of intact cells of green bacterium Chlorobium phaeovibrioides: A spectral hole burning study. Photosynth Res 41:205–210

    CAS  PubMed  Google Scholar 

  • Fetisova Z, Freiberg A, Mauring K, Novoderezhkin V, Taisova A, Timpmann K (1996) Excitation energy transfer in chlorosomes of green bacteria: theoretical and experimental studies. Biophys J 71:101–995

    Google Scholar 

  • Frigaard N-U, Bryant DA (2004) Seeing green bacteria in a new light: genomics-enabled studies of the photosynthetic apparatus in green sulfur bacteria and filamentous anoxygenic phototrophic bacteria. Arch Microbiol 182:265–276

    CAS  PubMed  Google Scholar 

  • Frigaard N-U, Bryant D (2006) Chlorosomes: antenna organelles in green photosynthetic bacteria. In: Shively JM (ed) Complex intracellular structures in prokaryotes Microbiology monographs, vol 2. Springer, Berlin, pp 79–114

    Google Scholar 

  • Furumaki S, Vacha F, Habuchi S, Tsukatani Y, Bryant D, Vacha M (2011) Absorption linear dichroism measured directly on a single light-harvesting system: the role of disorder in chlorosomes of green photosynthetic bacteria. J Am Chem Soc 133(17):6703–6710

    CAS  PubMed  Google Scholar 

  • Furumaki S, Yabiku Y, Habuchi S, Tsukatani Y, Bryant D, Vacha M (2012) Circular dichroism measured on single chlorosomal light-harvesting complexes of green photosynthetic bacteria. J Phys Chem Lett 3:3545–3549

    CAS  PubMed  Google Scholar 

  • Ganapathy S, Oostergetel G, Wawrzyniak P, Reus M, Gomez Maqueo Chew A, Buda F, Boekema E, Bryant D, Holzwarth A, de Groot H (2009) Alternating syn-anti bacteriochlorophylls form concentric helical nanotubes in chlorosomes. Proc Natl Acad Sci USA 106:8525–8530

    CAS  PubMed  Google Scholar 

  • Gerola P, Olson J (1986) A new bacteriochlorophyll a-protein complex associated with chlorosomes of green sulfur bacteria. Biochim Biophys Acta 848:69–76

    CAS  PubMed  Google Scholar 

  • Golecki J, Oelze J (1987) Quantitative relationship between bactenochlorophyll content, cytoplasmic membrane structure and chlorosome size in Chloroflexus aurantiacus. Arch Microbiol 148:236–241

    CAS  Google Scholar 

  • Gomez Maqueo Chew A, Frigaard N-U, Bryant D (2007) Bacteriochlorophyllide c C-82 and C-121 methyltransferases are essential for adaptation to low light in Chlorobaculum tepidum. J Bacteriol 189(17):6176–6184

    PubMed  Google Scholar 

  • Graczyk A, Żurek JM, Paterson MJ (2014) On the linear and non-linear electronic spectroscopy of chlorophylls: a computational study. Photochem Photobiol Sci 13:103–111

    CAS  PubMed  Google Scholar 

  • Gülen D (2006) Significance of the excitonic intensity borrowing in the J-/H-aggregates of bacteriochlorophylls/chlorophylls. Photosynth Res 87:205–214

    PubMed  Google Scholar 

  • Gunther L, Jendrny M, Bloemsma E, Tank M, Oostergetel G, Bryant D, Knoester J, Köhler J (2016) Structure of light-harvesting aggregates in individual chlorosomes. J Phys Chem B 120:5367–5376

    PubMed  Google Scholar 

  • Hartigan N, Tharia H, Sweeney F, Lawless A, Papiz M (2002) The 7.5-A electron density and spectroscopic properties of a novel low-light B800 LH2 from Rhodopseudomonas palustris. Biophys J 82:963–977

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holzwarth AR, Schaffner K (1994) On the structure of bacteriochlorophyll molecular aggregates in the chlorosomes of green bacteria. A molecular modelling study. Photosynth Res 41:225–233

    CAS  PubMed  Google Scholar 

  • Jendrny M, Aartsma T, Kӧhler J (2014) Insights into the excitonic states of individual chlorosomes from Chlorobaculum tepidum. Biophys J 106:1921–1927

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krasnovsky A, Bystrova M (1980) Self-assembly of chlorophyll aggregated structures. BioSystems 12:181–194

    CAS  PubMed  Google Scholar 

  • Lin S, Van Amerongen H, Struve W (1991) Ultrafast pump-probe spectroscopy of bacteriochlorophyll c antennae in bacteriochlorophyll a-containing chlorosomes from the green photosynthetic bacterium Chloroflexus aurantiacus. Biochim Biophys Acta 1060:13–22

    CAS  Google Scholar 

  • Linnanto J, Korppi-Tommola J (2008) Investigation on chlorosomal antenna geometries: tube, lamella and spiral-type self-aggregates. Photosynth Res 96:227–245

    CAS  PubMed  Google Scholar 

  • Linnanto J, Korppi-Tommola J (2013) Exciton description of chlorosome to baseplate excitation energy transfer in filamentous anoxygenic phototrophs and green sulfur bacteria. J Phys Chem B 117:11144–11161

    CAS  PubMed  Google Scholar 

  • Ma Y-Z, Cox R, Gillbro T, Miller M (1996) Bacteriochlorophyll organization and energy transfer kinetics in chlorosomes from Chloroflexus aurantiacus depend on the light regime during growth. Photosynth Res 47:157–165

    CAS  PubMed  Google Scholar 

  • Martiskainen J, Linnanto J, Kananavičius R, Lehtovuori V, Korppi-Tommola J (2009) Excitation energy transfer in isolated chlorosomes from Chloroflexus aurantiacus. Chem Phys Lett 477:216–220

    CAS  Google Scholar 

  • Martiskainen J, Linnanto J, Aumanen V, Myllyperkio P, Korppi-Tommola J, (2012) Excitation energy transfer in isolated chlorosomes from Chlorobaculum tepidum and Prosthecochloris aestuarii. Photochem Photobiol 88(3):675–683

    CAS  PubMed  Google Scholar 

  • Mauring K, Novoderezhkin V, Taisova A, Fetisova Z (1999) Exciton levels structure of antenna bacteriochlorophyll c aggregates in the green bacterium Chloroflexus aurantiacus as probed by 1.8–293 K fluorescence spectroscopy. FEBS Lett 456:239–242

    CAS  PubMed  Google Scholar 

  • Mimuro M, Hirota M, Nishimura Y, Moriyama T, Yamazaki I, Shimada K, Matsuura K (1994) Molecular organization of bacteriochlorophyll in chlorosomes of the green photosynthetic bacterium Chloroflexus aurantiacus: studies of fluorescence depolarization accompanied by energy transfer process. Photosynth Res 41:181–191

    CAS  PubMed  Google Scholar 

  • Mirkovic T, Ostroumov E, Anna J, van Grondelle R, Govindjee SG (2017) Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chem Rev 117(2):249–293

    CAS  PubMed  Google Scholar 

  • Montaňo G, Wu H, Lin S, Brune D, Blankenship R (2003) Isolation and characterization of the B798 light-harvesting baseplate from the chlorosomes of Chloroflexus aurantiacus. Biochemistry 42:10246–10251

    PubMed  Google Scholar 

  • Novoderezhkin V, Taisova A, Fetisova Z, Blankenship R, Savikhin S, Buck D, Struve W (1998) Energy transfers in the B808–866 antenna from the green bacterium Chloroflexus aurantiacus. Biophys J 74:2069–2075

    CAS  PubMed  PubMed Central  Google Scholar 

  • Novoderezhkin V, Taisova A, Fetisova Z (2001) Unit building block of the oligomeric chlorosomal antenna of the green photosynthetic bacterium Chloroflexus aurantiacus: modeling of nonlinear optical spectra. Chem Phys Lett 335:234–240

    CAS  Google Scholar 

  • Oelze J (1992) Light and oxygen regulation of the synthesis of bacteriochlorophyll a and bacteriochlorophyll c in Chloroflexus aurantiacus. J Bacteriol 174:5021–5026

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oelze J, Golecki J (1995) Membranes and chlorosomes of green bacteria: structure, composition and development. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, Dordrecht, pp 259–278

    Google Scholar 

  • Olson JM (1980) Chlorophyll organization in green photosynthetic bacteria. Biochim Biophys Acta 594:33–51

    CAS  PubMed  Google Scholar 

  • Olson J (1998) Chlorophyll organization and function in green photosynthetic bacteria. Photochem Photobiol 67:61–75

    CAS  Google Scholar 

  • Oostergetel G, van Amerongen H, Boekema E (2010) The chlorosome: a prototype for efficient light harvesting in photosynthesis. Photosynth Res 104(2–3):245–255

    CAS  PubMed  PubMed Central  Google Scholar 

  • Orf G, Blankenship R (2013) Chlorosome antenna complexes from green photosynthetic bacteria. Photosynth Res 116:315–331

    CAS  PubMed  Google Scholar 

  • Pandit A, de Groot H (2012) Solid-state NMR applied to photosynthetic light-harvesting complexes. Photosynth Res 111:219–226

    CAS  PubMed  Google Scholar 

  • Pierson B, Castenholz R (1974) Pigments and growth in Chloroflexus aurantiacus, a phototrophic filamentous bacterium. Arch Microbiol 100:283–305

    CAS  Google Scholar 

  • Pierson B, Castenholz R (1992) The family Chloroflexaceae. In: Balows A, Trüper H, Dworkin M, Harder W, Schleifer K (eds) The prokaryotes, vol 4, 2nd edn. Springer, Heidelberg, pp 3754–3774

    Google Scholar 

  • Pierson B, Castenholz R (1995) Taxonomy and physiology of filamentous anoxygenic phototrophs. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, Dordrecht, pp 31–47

    Google Scholar 

  • Prokhorenko VI, Steensgaard DB, Holzwarth AR (2000) Exciton dynamics in the chlorosomal antennae of the green bacteria Chloroflexus aurantiacus and Chlorobium tepidum. Biophys J 79:2105–2120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prokhorenko VI, Steensgaard DB, Holzwarth AR (2003) Exciton theory for supramolecular chlorosomal aggregates: 1. Aggregate size dependence of the linear spectra. Biophys J 85:3173–3186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pšenčik J, Ikonen T, Laurinmäki P, Merckel M, Butcher S, Serimaa R, Tuma R (2004) Lamellar organization of pigments in chlorosomes, the light harvesting system of green bacteria. Biophys J 87:1165–1172

    PubMed  PubMed Central  Google Scholar 

  • Pšenčik J, Torkkeli M, Zupčanová A, Vácha F, Serimaa R, Tuma R (2010) The lamellar spacing in self-assembling bacteriochlorophyll aggregates is proportional to the length of the esterifying alcohol. Photosynth Res 104:211–219

    PubMed  Google Scholar 

  • Pšenčik J, Arellano J, Collins A, Laurinmäki P, Torkkeli M, Lӧflund B, Serimaa R, Blankenship R, Tuma R, Butcher S (2013) Structural and functional roles of carotenoids in chlorosomes. J Bacteriol 195:1727–1734

    PubMed  PubMed Central  Google Scholar 

  • Rich A, Tinoco I Jr (1960) The effect of chain length upon hypochromism in nucleic acids and polynucleotides. J Am Chem Soc 82:6409–6410

    CAS  Google Scholar 

  • Saga Y, Tamiaki H (2006) Transmission electron microscopic study on supramolecular nanostructures of bacteriochlorophyll self-aggregates in chlorosomes of green photosynthetic bacteria. J Biosc Bioeng 102:18–23

    Google Scholar 

  • Savikhin S, Zhu Y, Lin S, Blankenship RE, Struve WS (1994) Femtosecond spectroscopy of chlorosome antennas from the green photosynthetic bacterium Chloroflexus aurantiacus. J Phys Chem 98:10322–10334

    CAS  Google Scholar 

  • Savikhin S, Buck D, Struve W, Blankenship R, Taisova A, Novoderezhkin V, Fetisova Z (1998) Exciton delocalization in the bacteriochlorophyll c antenna of the green bacterium Chloroflexus aurantiacus as revealed by ultrafast pump-probe spectroscopy. FEBS Lett 430:323–326

    CAS  PubMed  Google Scholar 

  • Sawaya N, Huh J, Fujita T, Saikin S, Aspuru-Guzik A (2015) Fast delocalization leads to robust long-range excitonic transfer in a large quantum chlorosome model. Nano Lett 15:1722–1729

    CAS  PubMed  Google Scholar 

  • Scherz A, Parson WW (1984a) Oligomers of bacteriochlophyll and bacteriophyophytin with spectroscopic properties resembling those found in photosynthetic bacteria. Biochim Biophys Acta 766:653–665

    CAS  Google Scholar 

  • Scherz A, Parson WW (1984b) Exciton interactions in dimers of bacteriochlorophyll and related molecules. Biochim Biophys Acta 766:666–678

    CAS  Google Scholar 

  • Schmidt K, Maarzahl M, Mayer F (1980) Development and pigmentation of chlorosomes in Chloroflexus aurantiacus Ok-70-fl. Arch Microbiol 127:87–97

    CAS  Google Scholar 

  • Scholes GD, Fleming GR, Alexandra Olaya-Castro A, van Grondelle R (2011) Lessons from nature about solar light harvesting. Nat Chem 3:763–774

    CAS  PubMed  Google Scholar 

  • Shibata Y, Saga Y, Tamiaki H, Itoh S (2006) Low temperature fluorescence from single chlorosomes, photosynthetic antenna complexes of green filamentous and sulfur bacteria. Biophys J 91:3787–3796

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shibata Y, Saga Y, Tamiaki H, Itoh S (2007) Polarized fluorescence of aggregated bacteriochlorophyll c and baseplate bacteriochlorophyll a in single chlorosomes isolated from Chloroflexus aurantiacus. Biochemistry 46:7062–7068

    CAS  PubMed  Google Scholar 

  • Shibata Y, Tateishi S, Nakabayashi S, Itoh S, Tamiaki H (2010) Intensity borrowing via excitonic couplings among Soret and Qy transitions of bacteriochlorophylls in the pigment aggregates of chlorosomes, the light-harvesting antennae of green sulfur bacteria. Biochemistry 49:7504–7515

    CAS  PubMed  Google Scholar 

  • Smith K, Kehres L, Fajer J (1983) Aggregation of bacteriochlorophylls c, d or e. Models for the antenna chlorophylls of green and brown photosynthetic bacteria. J Am Chem Soc 105:1387–1389

    CAS  Google Scholar 

  • Sprague S, Staehelin L, DiBartolomeis M, Fuller R (1981) Isolation and development of chlorosomes in the green bacterium Chloroflexus aurantiacus. J Bacteriol 147:1021–1031

    CAS  PubMed  PubMed Central  Google Scholar 

  • Staehelin L, Golecki J, Fuller R, Drews G (1978) Visualization of the supramolecular architecture of chlorosomes (Chlorobium type vesicles) in freeze-fractured cells of Chloroflexus aurantiacus. Arch Microbiol 119:269–277

    Google Scholar 

  • Taisova A, Gulen D, Iseri E, Drachev V, Cherenkova T, Fetisova Z (2001) Antenna-size dependent hyperchromism of the Qy absorption band of chlorosomal oligomeric bacteriochlorophyll (BChl) c antennae of green bacteria. Photosynth Res 69:9

    Google Scholar 

  • Taisova A, Keppen O, Lukashev E, Arutyunyan A, Fetisova Z (2002) Study of the chlorosomal antenna of the green mesophilic filamentous bacterium Oscillochloris trichoides. Photosynth Res 74:73–85

    CAS  PubMed  Google Scholar 

  • Taisova A, Keppen O, Novikov A, Naumova M, Fetisova Z (2006) Some factors controlling the biosynthesis of chlorosome antenna bacteriochlorophylls in green filamentous anoxygenic phototrophic bacteria of the family Oscillochloridaceae. Microbiology 75(2):129–135

    CAS  Google Scholar 

  • Tamiaki H (1996) Supramolecular structure in extramembraneous antennae of green photosynthetic bacteria. Coord Chem Rev 148:183–197

    CAS  Google Scholar 

  • Tamiaki H, Amakawa M, Holzwarth AR, Schaffner K (2002) Aggregation of synthetic metallochlorins in hexane. A model of chlorosomal bacteriochlorophyll self-assemblies in green bacteria. Photosynth Res 71:59–67

    CAS  PubMed  Google Scholar 

  • Tamiaki H, Shibata R, Mizoguchi T (2007) The 17-propionate function of (bacterio)chlorophylls: biological implication of their long esterifying chains in photosynthetic systems. Photochem Photobiol 83:152–162

    CAS  PubMed  Google Scholar 

  • Tinoco I (1960) Hypochromism in polynucleotides. J Am Chem Soc 82:4785–4790

    CAS  Google Scholar 

  • Tinoco I Jr (1962) Theoretical Aspects of Optical Activity. Part Two: Polymers Advances in Chemical Physics, vol 4, pp 113–160. Interscience Publishers, New York.

  • Umetsu M, Wang ZY, Kobayashi M, Nozawa T (1999) Interaction of photosynthetic pigments with various organic solvents: magnetic circular dichroism approach and application to chlorosomes. Biochim Biophys Acta 1410:19–31

    CAS  PubMed  Google Scholar 

  • Van Dorssen R, Amesz J (1988) Pigment organization and energy transfer in the green photosynthetic bacterium Chloroflexus aurantiacus. III. Energy transfer in whole cells. Photosynth Res 15:177–189

    PubMed  Google Scholar 

  • Van Amerongen H, Vasmel H, van Grondelle R (1988) Linear dichroism of chlorosomes from Chloroflexus aurantiacus in compressed gels and electric fields. Biophys J 54:65–76

    PubMed  PubMed Central  Google Scholar 

  • Van Dorssen RJ, Vasmel H, Amesz J (1986) Pigment organization and energy transfer in the green photosynthetic bacterium Chloroflexus aurantiacus II. The chlorosome. Photosynth Res 9:33–45

    PubMed  Google Scholar 

  • Yakovlev A, Novoderezhkin V, Taisova A, Fetisova Z (2002a) Exciton dynamics in the chlorosomal antenna of the green bacterium Chloroflexus aurantiacus: experimental and theoretical studies of femtosecond pump-probe spectra. Photosynth Res 71:19–32

    CAS  PubMed  Google Scholar 

  • Yakovlev A, Taisova A, Fetisova Z (2002b) Light control over the size of an antenna unit building block as an effecient strategy for light harvesting in photosynthesis. FEBS Lett 512:129–132

    CAS  PubMed  Google Scholar 

  • Yakovlev A, Taisova A, Arutyunyan A, Shuvalov V, Fetisova Z (2017) Variability of aggregation extent of light-harvesting pigments in peripheral antenna of Chloroflexus aurantiacus. Photosynth Res 133:343–356

    CAS  PubMed  Google Scholar 

  • Yakovlev AG, Taisova AS, Shuvalov VA, Fetisova ZG (2018) Estimation of the bacteriochlorophyll c oligomerisation extent in Chloroflexus aurantiacus chlorosomes by very low-frequency vibrations of the pigment molecules: a new approach. Biophys Chem 240:1–8

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Prof. Dr. Demet Gülen for fruitful cooperation and assistance in theoretical modeling. This work was supported in part by the Russian Foundation for Basic Research (Grants 18-04-00105a, 14-04-00295a).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrei G. Yakovlev or Zoya G. Fetisova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 182 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovlev, A.G., Taisova, A.S. & Fetisova, Z.G. Q-band hyperchromism and B-band hypochromism of bacteriochlorophyll c as a tool for investigation of the oligomeric structure of chlorosomes of the green photosynthetic bacterium Chloroflexus aurantiacus. Photosynth Res 146, 95–108 (2020). https://doi.org/10.1007/s11120-019-00707-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-019-00707-9

Keywords

Navigation