Light polarization dependency existing in the biological photosystem and possible implications for artificial antenna systems

Abstract

The processes of biological photosynthesis provide inspiration and valuable lessons for artificial energy collection, transfer, and conversion systems. The extraordinary efficiency of each sequential process of light to biomass conversion originates from the unique architecture and mechanism of photosynthetic proteins. Near 100% quantum efficiency of energy transfer in biological photosystems is achieved by the chlorophyll assemblies in antenna complexes, which also exhibit a significant degree of light polarization. The three-dimensional chiral assembly of chlorophylls is an optimized biological architecture that enables maximum energy transfer efficiency with precisely designed coupling between chlorophylls. In this review, we summarize the key lessons from the photosynthetic processes in biological photosystems, and move our focus to energy transfer mechanisms and the chiral structure of the chlorophyll assembly. Then, we introduce recent approaches and possible implications to realize the biological energy transfer processes on bioinspired scaffold-based artificial antenna systems.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2

Adapted from Georgakopoulou et al. (2002) with permission from Elsevier. b Circular dichroism and absorbance spectra of LHCII of spinach. Adapted from Xu et al. (2015). c Chlorophyll assemblies of LH2 of Rhodopseudomonas acidophila (PDB 1KZU). Reprinted with permission from Mirkovic et al. (2017). Copyright 2017 American Chemical Society. d Chlorophyll assemblies of LHCII of Spinacia oleracea (PDB 1RWT)

Fig. 3

Adapted with permission from Springer et al. (2012). Copyright 2012 American Chemical Society. b Artificial light harvesting by several randomly oriented, light-absorbing donor pigments (green) funneling the energy to individual acceptor molecules (red) that all have the same orientation with respect to the laboratory frame. Reprinted from Pieper et al. (2018)

Fig. 4

Adapted with permission from Kuciauskas et al. (2010). Copyright 2010 American Chemical Society. b Schematic illustration of complex formation of MBP-rubα-YH/Zn-Chlorin dimer complexes. Adapted with permission from Sakai et al. (2013). Copyright 2013 American Chemical Society. c Schematic illustration of energy transfer efficiency for molecular dyads using zinc porphyrin and free-base porphyrin on peptoid helices. d Schematic illustration of host–guest complexation between metalloporphyrin-peptoid conjugate and chiral guests. Reprinted from Lee et al. (2018d)

Fig. 5

Adapted with permission from Kang et al. (2017). b Characteristic ECCD signal of porphyrins according to the structural change of peptoid (red: right-handed helix, blue: threaded-loop). Reproduced from Yang et al. (2017a) with permission from The Royal Society of Chemistry

Fig. 6

References

  1. Alia A, Ganapathy S, de Groot HJM (2009) Magic angle spinning (MAS) NMR: a new tool to study the spatial and electronic structure of photosynthetic complexes. Photosynth Res 102:415–425. https://doi.org/10.1007/s11120-009-9478-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Askerka M, Brudvig GW, Batista VS (2016) The O2-evolving complex of photosystem II: recent insights from quantum mechanics/molecular mechanics (QM/MM), extended X-ray absorption fine structure (EXAFS), and femtosecond X-ray crystallography data. Acc Chem Res 50:41–48. https://doi.org/10.1021/acs.accounts.6b00405

    CAS  Article  PubMed  Google Scholar 

  3. Bagaki A, Gobeze HB, Charalambidis G, Charisiadis A, Stangel C, Nikolaou V, Stergiou A, Tagmatarchis N, D’Souza F, Coutsolelos AG (2017) Axially assembled photosynthetic antenna-reaction center mimics composed of boron dipyrromethenes, aluminum porphyrin, and fullerene derivatives. Inorg Chem 56:10268–10280. https://doi.org/10.1021/acs.inorgchem.7b01050

    CAS  Article  PubMed  Google Scholar 

  4. Balaban TS, Fromme P, Holzwarth AR, Krauß N, Prokhorenko VI (2002) Relevance of the diastereotopic ligation of magnesium atoms of chlorophylls in Photosystem I. Biochim Biophys Acta Bioenerg 1556:197–207. https://doi.org/10.1016/S0005-2728(02)00363-8

    CAS  Article  Google Scholar 

  5. Balamurugan M, Saravanan N, Ha H, Lee YH, Nam KT (2018) Involvement of high-valent manganese-oxo intermediates in oxidation reactions: realisation in nature, nano and molecular systems. Nano Converg 5:18. https://doi.org/10.1186/s40580-018-0150-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Ball P (2018) Is photosynthesis quantum-ish? Phys World 31:44. https://physicsworld.com/a/is-photosynthesis-quantum-ish/. Accessed 10 July 2019

    Article  Google Scholar 

  7. Beljonne D, Curutchet C, Scholes GD, Silbey RJ (2009) Beyond Förster resonance energy transfer in biological and nanoscale systems. J Phys Chem B 113:6583–6599. https://doi.org/10.1021/jp900708f

    CAS  Article  PubMed  Google Scholar 

  8. Biscaglia F, Frezza E, Zurlo E, Gobbo M (2016) Linker dependent chirality of solvent induced self-assembled structures of porphyrin-a-helical peptide conjugates. Org Biomol Chem 14:9568–9577. https://doi.org/10.1039/C6OB01633B

    CAS  Article  PubMed  Google Scholar 

  9. Blankenship RE (1992) Origin and early evolution of photosynthesis. Photosyn Res 33:91–111. https://doi.org/10.1007/BF00039173

    CAS  Article  PubMed  Google Scholar 

  10. Blankenship RE (2014) Molecular mechanisms of photosynthesis, 2nd edn. Wiley, Oxford

    Google Scholar 

  11. Büchel C, Garab G (1997) Organization of the pigment molecules in the chlorophyll a/c light-harvesting complex of Pleurochloris meiringensis (xanthophyceae). Characterization with circular dichroism and absorbance spectroscopy. J Photochem Photobiol B 37:118–124. https://doi.org/10.1016/S1011-1344(96)07337-X

    Article  Google Scholar 

  12. Charalambidis G, Georgilis E, Panda MK, Anson CE, Powell AK, Doyle S, Moss D, Jochum T, Horton PN, Coles SJ, Linares M, Beljonne D, Naubron JV, Conradt J, Kalt H, Mitraki A, Coutsolelos AG, Balaban TS (2016) A switchable self-assembling and disassembling chiral system based on a porphyrin-substituted phenylalanine-phenylalanine motif. Nat Commun 7:12657. https://doi.org/10.1038/ncomms12657

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Cheng Y-C, Fleming GR (2009) Dynamics of light harvesting in photosynthesis. Annu Rev Phys Chem 60:241–262. https://doi.org/10.1146/annurev.physchem.040808.090259

    CAS  Article  Google Scholar 

  14. Chenu A, Scholes GD (2015) Coherence in energy transfer and photosynthesis. Annu Rev Phys Chem 66:69–96. https://doi.org/10.1146/annurev-physchem-040214-121713

    CAS  Article  PubMed  Google Scholar 

  15. Croce R, Van Amerongen H (2014) Natural strategies for photosynthetic light harvesting. Nat Chem Biol 10:492. https://doi.org/10.1038/nchembio.1555

    CAS  Article  PubMed  Google Scholar 

  16. Dutta PK, Varghese R, Nangreave J, Lin S, Yan H, Liu Y (2011) DNA-directed artificial light-harvesting antenna. J Am Chem Soc 133:11985–11993. https://doi.org/10.1021/ja1115138

    CAS  Article  PubMed  Google Scholar 

  17. Elston T, Wang H, Oster G (1998) Energy transduction in ATP synthase. Nature 391:510. https://doi.org/10.1038/35185

    CAS  Article  PubMed  Google Scholar 

  18. Faessler V, Hrelescu C, Lutich AA, Osinkina L, Mayilo S, Jäckel F, Feldmann J (2011) Accelerating fluorescence resonance energy transfer with plasmonic nanoresonators. Chem Phys Lett 508:67–70. https://doi.org/10.1016/j.cplett.2011.03.088

    CAS  Article  Google Scholar 

  19. Förster T (1946) Energiewanderung und fluoreszenz. Naturwissenschaften 33:166–175. https://doi.org/10.1007/BF00585226

    Article  Google Scholar 

  20. Fowler GJS, Visschers RW, Grief GG, van Grondelle R, Hunter CN (1992) Genetically modified photosynthetic antenna complexes with blueshifted absorbance bands. Nature 355:848–850. https://doi.org/10.1038/355848a0

    CAS  Article  PubMed  Google Scholar 

  21. Franck J, Teller E (1938) Migration and photochemical action of excitation energy in crystals. J Chem Phys 6:861–872. https://doi.org/10.1063/1.1750182

    CAS  Article  Google Scholar 

  22. Furukawa R, Kondo M, Yajima S, Harada K, Nagashima KVP, Nagata M, Iida K, Dewa T, Nango M (2018) Selective immobilization of bacterial light-harvesting proteins and their photoelectric responses. MRS Commun 8:1124–1128. https://doi.org/10.1557/mrc.2018.162

    CAS  Article  Google Scholar 

  23. Garab G, van Amerongen H (2009) Linear dichroism and circular dichroism in photosynthesis research. Photosynth Res 101:135–146. https://doi.org/10.1007/s11120-009-9424-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Georgakopoulou S, Frese RN, Johnson E, Koolhaas C, Cogdell RJ, van Grondelle R, van der Zwan G (2002) Absorption and CD spectroscopy and modeling of various LH2 complexes from purple bacteria. Biophys J 82:2184–2197. https://doi.org/10.1016/S0006-3495(02)75565-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Georgakopoulou S, Van Der Zwan G, Bassi R, Van Grondelle R, Van Amerongen H, Croce R (2007) Understanding the changes in the circular dichroism of light harvesting complex II upon varying its pigment composition and organization. Biochemistry 46:4745–4754. https://doi.org/10.1021/bi062031y

    CAS  Article  PubMed  Google Scholar 

  26. Gersten JI, Nitzan A (1984) Accelerated energy transfer between molecules near a solid particle. Chem Phys Lett 104:31–37. https://doi.org/10.1016/0009-2614(84)85300-2

    CAS  Article  Google Scholar 

  27. Green MA, Ho-Baillie A, Snaith HJ (2014) The emergence of perovskite solar cells. Nat Photonics 8:506–514. https://doi.org/10.1038/nphoton.2014.134

    CAS  Article  Google Scholar 

  28. Gunderson VL, Wasielewski MR (2012) Supramolecular chlorophyll assemblies for artificial photosynthesi. Handbook of Porphyrin Sciences, vol 20. World Scientific, Singapore

    Google Scholar 

  29. Gust D, Moore TA, Moore AL (2001) Mimicking photosynthetic solar energy transduction. Acc Chem Res 34:40–48. https://doi.org/10.1021/ar9801301

    CAS  Article  Google Scholar 

  30. Harris MA, Jiang J, Niedzwiedzki DM, Jiao J, Taniguchi M, Kirmaier C, Loach PA, Bocian DF, Lindsey JS, Holten D, Parkes-Loach PS (2014) Versatile design of biohybrid light-harvesting architectures to tune location, density, and spectral coverage of attached synthetic chromophores for enhanced energy capture. Photosynth Res 121:35–48. https://doi.org/10.1007/s11120-014-9993-8

    CAS  Article  Google Scholar 

  31. Harris MA, Parkes-Loach PS, Springer JW, Jiang J, Martin EC, Qian P, Jiao J, Niedzwiedzki DM, Kirmaier C, Olsen JD, Bocian DF, Holten D, Hunter CN, Lindsey JS, Loach PA (2013) Integration of multiple chromophores with native photosynthetic antennas to enhance solar energy capture and delivery. Chem Sci 4:3924–3933. https://doi.org/10.1039/C3SC51518D

    CAS  Article  Google Scholar 

  32. Hua XM, Gersten JI, Nitzan A (1985) Theory of energy transfer between molecules near solid state particles. J Chem Phys 83:3650–3659. https://doi.org/10.1063/1.449120

    CAS  Article  Google Scholar 

  33. Imker HJ, Fedorov AA, Fedorov EV, Almo SC, Gerlt JA (2007) Mechanistic diversity in the RuBisCO superfamily: the “enolase” in the methionine salvage pathway in Geobacillus kaustophilus. Biochemistry 46:4077–4089. https://doi.org/10.1021/bi7000483

    CAS  Article  PubMed  Google Scholar 

  34. Ishizaki A, Calhoun TR, Schlau-Cohen GS, Fleming GR (2010) Quantum coherence and its interplay with protein environments in photosynthetic electronic energy transfer. Phys Chem Chem Phys 12:7319–7337. https://doi.org/10.1039/C003389H

    CAS  Article  PubMed  Google Scholar 

  35. Jin K, Seo H, Ha H, Kim Y, Cho KH, Hong JS, Nam KT (2016) Recent advances in heterogeneous Mn-based electrocatalysts toward biological photosynthetic Mn4Ca cluster. Catal Today. https://doi.org/10.1016/j.cattod.2016.12.041

    Article  Google Scholar 

  36. Kang B, Chung S, Ahn YD, Lee J, Seo J (2013) Porphyrin-peptoid conjugates: face-to-face display of porphyrins on peptoid helices. Org Lett 15:1670–1673. https://doi.org/10.1021/ol4004564

    CAS  Article  PubMed  Google Scholar 

  37. Kang B, Yang W, Lee S, Mukherjee S, Forstater J, Kim H, Goh B, Kim TY, Voelz VA, Pang Y, Seo J (2017) Precisely tuneable energy transfer system using peptoid helix-based molecular scaffold. Sci Rep 7:4786. https://doi.org/10.1038/s41598-017-04727-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Katterle M, Prokhorenko VI, Holzwarth AR, Jesorka A (2007) An artificial supramolecular photosynthetic unit. Chem Phys Lett 447:284–288. https://doi.org/10.1016/j.cplett.2007.09.030

    CAS  Article  Google Scholar 

  39. Kern J, Chatterjee R, Young ID, Fuller FD, Lassalle L, Ibrahim M, Gul S, Fransson T, Brewster AS, Alonso-Mori R (2018) Structures of the intermediates of Kok’s photosynthetic water oxidation clock. Nature 563:421–425. https://doi.org/10.1038/s41586-018-0681-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Kim Y, Lee JH, Ha H, Im SW, Nam KT (2016) Material science lesson from the biological photosystem. Nano Converg 3:19. https://doi.org/10.1186/s40580-016-0079-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Kim Y, Kang B, Ahn HY, Seo J, Nam KT (2017) Plasmon enhanced fluorescence based on porphyrin-peptoid hybridized gold nanoparticle platform. Small 13:1700071. https://doi.org/10.1002/smll.201700071

    CAS  Article  Google Scholar 

  42. Kodaimati MSLS, Schatz GC, Weiss EA (2018) Energy transfer-enhanced photocatalytic reduction of protons within quantum dot light-harvesting-catalyst assemblies. Proc Natl Acad Sci 115:8290–8295. https://doi.org/10.1073/pnas.1805625115

    CAS  Article  PubMed  Google Scholar 

  43. Kok B, Forbush B, McGloin M (1970) Cooperation of charges in photosynthetic O2 evolution–I. A linear four step mechanism. Photochem Photobiol 11:457–475. https://doi.org/10.1111/j.1751-1097.1970.tb06017.x

    CAS  Article  PubMed  Google Scholar 

  44. Koolhaas MHC, Frese RN, Fowler GJS, Bibby TS, Georgakopoulou S, van der Zwan G, Hunter CN, van Grondelle R (1998) Identification of the upper exciton component of the B850 bacteriochlorophylls of the LH2 antenna complex, using a B800-free mutant of Rhodobacter sphaeroides. Biochemistry 37:4693–4698. https://doi.org/10.1021/bi973036l

    CAS  Article  Google Scholar 

  45. Kuciauskas D, Kiskis J, Caputo GA, Gulbinas V (2010) Exciton annihilation and energy transfer in self-assembled peptide-porphyrin complexes depends on peptide secondary structure. J Phys Chem B 114:16029–16035. https://doi.org/10.1021/jp108685n

    CAS  Article  PubMed  Google Scholar 

  46. Kuhl KP, Hatsukade T, Cave ER, Abram DN, Kibsgaard J, Jaramillo TF (2014) Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J Am Chem Soc 136:14107–14113. https://doi.org/10.1021/ja505791r

    CAS  Article  PubMed  Google Scholar 

  47. Kwa S, Groeneveld F, Dekker J, Van Grondelle R, Van Amerongen H, Lin S, Struve W (1992) Steady-state and time-resolved polarized light spectroscopy of the green plant light-harvesting complex II. Biochim Biophys Acta Bioenerg 1101:143–146. https://doi.org/10.1016/0005-2728(92)90198-B

    CAS  Article  Google Scholar 

  48. Lakowicz JR, Kuśba J, Shen Y, Malicka J, Dauria S, Gryczynski Z, Gryczynski I (2003) Effects of metallic silver particles on resonance energy transfer between fluorophores bound to DNA. J Fluoresc 13:69–77. https://doi.org/10.1023/A:1022306630924

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Lee H, Cheng Y-C, Fleming GR (2007) Coherence dynamics in photosynthesis: protein protection of excitonic coherence. Science 316:1462–1465. https://doi.org/10.1126/science.1142188

    CAS  Article  PubMed  Google Scholar 

  50. Lee CYFO, Hong BJ, Sarjeant AA, Nguyen ST, Hupp JT (2011) Light-harvesting metal-organic frameworks (MOFs): efficient strut-to-strut energy transfer in bodipy and porphyrin-based MOFs. J Am Chem Soc 133:15858–15861. https://doi.org/10.1021/ja206029a

    CAS  Article  PubMed  Google Scholar 

  51. Lee S-H, Blake IM, Larsen AG, McDonald JA, Ohkubo K, Fukuzumi S, Reimers JR, Crossley MJ (2016) Synthetically tuneable biomimetic artificial photosynthetic reaction centres that closely resemble the natural system in purple bacteria. Chem Sci 7:6534–6550. https://doi.org/10.1039/C6SC01076H

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Lee H-E, Ahn H-Y, Mun J, Lee YY, Kim M, Cho NH, Chang K, Kim WS, Rho J, Nam KT (2018a) Amino-acid-and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature 556:360–365. https://doi.org/10.1038/s41586-018-0034-1

    CAS  Article  PubMed  Google Scholar 

  53. Lee CW, Hong JS, Yang KD, Jin K, Lee JH, Ahn H-Y, Seo H, Sung N-E, Nam KT (2018b) Selective electrochemical production of formate from carbon dioxide with bismuth-based catalysts in an aqueous electrolyte. ACS Catal 8:931–937. https://doi.org/10.1021/acscatal.7b03242

    CAS  Article  Google Scholar 

  54. Lee YJ, Kang B, Seo J (2018c) Metalloporphyrin dimers bridged by a peptoid helix: host-guest interaction and chiral recognition. Molecules 23:2741. https://doi.org/10.3390/molecules23112741

    CAS  Article  PubMed Central  Google Scholar 

  55. Lee H-E, Lee J, Ju M, Ahn H-Y, Lee YY, Jang H-S, Nam KT (2018d) Identifying peptide sequences that can control the assembly of gold nanostructures. Mol Syst Des Eng 3:581–590. https://doi.org/10.1039/C7ME00091J

    CAS  Article  Google Scholar 

  56. Leem G, Sherman BD, Schanze KS (2017) Polymer-based chromophore–catalyst assemblies for solar energy conversion. Nano Converg 4:37. https://doi.org/10.1186/s40580-017-0132-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. Liang F, Lindberg P, Lindblad P (2018) Engineering photoautotrophic carbon fixation for enhanced growth and productivity. Sustain Energy Fuels 2:2583–2600. https://doi.org/10.1039/c8se00281a

    CAS  Article  Google Scholar 

  58. Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X, Chang W (2004) Crystal structure of spinach major light-harvesting complex at 2.72Å resolution. Nature 428:287–292. https://doi.org/10.1038/nature02373

    CAS  Article  PubMed  Google Scholar 

  59. Liu K, Kang Y, Ma G, Mohwald H, Yan X (2016) Molecular and mesoscale mechanism for hierarchical self-assembly of dipeptide and porphyrin light-harvesting system. Phys Chem Chem Phys 18:16738–16747. https://doi.org/10.1039/C6CP01358A

    CAS  Article  PubMed  Google Scholar 

  60. Louwe RJW, Vrieze J, Hoff AJ, Aartsma TJ (1997) Toward an integral interpretation of the optical steady-state spectra of the FMO-complex of Prosthecochloris aestuarii. 2. Exciton simulations. J Phys Chem B 101:11280–11287. https://doi.org/10.1021/jp9722162

    CAS  Article  Google Scholar 

  61. Ludin NA, Mahmoud AMA-A, Mohamad AB, Kadhum AAH, Sopian K, Karim NSA (2014) Review on the development of natural dye photosensitizer for dye-sensitized solar cells. Renew Sustain Energy Rev 31:386–396. https://doi.org/10.1016/j.rser.2013.12.001

    CAS  Article  Google Scholar 

  62. Martínez-Díaz MV, Gdl Torre, Torres T (2010) Lighting porphyrins and phthalocyanines for molecular photovoltaics. Chem Commun 46:7090–7108. https://doi.org/10.1039/C0CC02213F

    Article  Google Scholar 

  63. Matthews BW, Fenna RE, Bolognesi MC, Schmid MF, Olson JM (1979) Structure of a bacteriochlorophyll a-protein from the green photosynthetic bacterium Prosthecochloris aestuarii. J Mol Biol 131:259–285. https://doi.org/10.1016/0022-2836(79)90076-7

    CAS  Article  PubMed  Google Scholar 

  64. McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ, Isaacs NW (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374:517–521. https://doi.org/10.1038/374517a0

    CAS  Article  Google Scholar 

  65. Messner CB, Driscoll PC, Piedrafita G, De Volder MFL, Ralser M (2017) Nonenzymatic gluconeogenesis-like formation of fructose 1,6-bisphosphate in ice. Proc Natl Acad Sci USA 114:7403–7407. https://doi.org/10.1073/pnas.1702274114

    CAS  Article  PubMed  Google Scholar 

  66. Ming T, Chen H, Jiang R, Li Q, Wang J (2012) Plasmon-controlled fluorescence: beyond the intensity enhancement. J Phys Chem Lett 3:191–202. https://doi.org/10.1021/jz201392k

    CAS  Article  Google Scholar 

  67. Mirkovic T, Ostroumov EE, Anna JM, Van Grondelle R, Govindjee Scholes GD (2017) Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chem Rev 117:249–293. https://doi.org/10.1021/acs.chemrev.6b00002

    CAS  Article  PubMed  Google Scholar 

  68. Nikoloudakis E, Karikis K, Han J, Kokotidou C, Charisiadis A, Folias F, Douvas AM, Mitraki A, Charalambidis G, Yan X, Coutsolelos AG (2019) A self-assembly study of PNA-porphyrin and PNA-BODIPY hybrids in mixed solvent systems. Nanoscale 11:3557–3566. https://doi.org/10.1039/C8NR05667F

    CAS  Article  PubMed  Google Scholar 

  69. Nishimura N, Nakayama S, Horiuchi A, Kumoda M, Miyatake T (2019) Reversible aggregation of chlorophyll derivative induced by phase transition of lipid. Langmuir 35:7242–7248. https://doi.org/10.1021/acs.langmuir.9b00586

    CAS  Article  PubMed  Google Scholar 

  70. Ochiai T, Nagata M, Shimoyama K, Amano M, Kondo M, Dewa T, Hashimoto H, Nango M (2010) Immobilization of porphyrin derivatives with a defined distance and orientation onto a gold electrode using synthetic light-harvesting a-helix hydrophobic polypeptides. Langmuir 26:14419–14422. https://doi.org/10.1021/la102869w

    CAS  Article  PubMed  Google Scholar 

  71. Oltra NS, Browne WR, Roelfes G (2013) Hierarchical self-assembly of a biomimetic light-harvesting antenna based on DNA G-quadruplexes. Chem Eur J 19:2457–2461. https://doi.org/10.1002/chem.201202550

    CAS  Article  Google Scholar 

  72. Panitchayangkoon G, Hayes D, Fransted KA, Caram JR, Harel E, Wen J, Blankenship RE, Engel GS (2010) Long-lived quantum coherence in photosynthetic complexes at physiological temperature. Proc Natl Acad Sci USA 107:12766–12770. https://doi.org/10.1073/pnas.1005484107

    Article  PubMed  Google Scholar 

  73. Pantazis DA (2018) Missing pieces in the puzzle of biological water oxidation. ACS Catal 8:9477–9507. https://doi.org/10.1021/acscatal.8b01928

    CAS  Article  Google Scholar 

  74. Pieper A, Hohgardt M, Willich M, Gacek DA, Hafi N, Pfennig D, Albrecht A, Walla PJ (2018) Biomimetic light-harvesting funnels for re-directioning of diffuse light. Nat Commun 9:666. https://doi.org/10.1038/s41467-018-03103-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. Poddutoori PK, Lim GN, Sandanayaka ASD, Karr PA, Ito O, D’Souza F, Pilkington M, van der Est A (2015) Axially assembled photosynthetic reaction center mimics composed of tetrathiafulvalene, aluminum(III) porphyrin and fullerene entities. Nanoscale 7:12151–12165. https://doi.org/10.1039/C5NR01675D

    CAS  Article  PubMed  Google Scholar 

  76. Prathapan S, Johnson TE, Lindsey JS (1993) Building-block synthesis of porphyrin light-harvesting arrays. J Am Chem Soc 115:7519–7520. https://doi.org/10.1021/ja00069a068

    CAS  Article  Google Scholar 

  77. Reddy KR, Jiang J, Krayer M, Harris MA, Springer JW, Yang E, Jiao J, Niedzwiedzki DM, Pandithavidana D, Parkes-Loach PS, Kirmaier C, Loach PA, Bocian DF, Holten D, Lindsey JS (2013) Palette of lipophilic bioconjugatable bacteriochlorins for construction of biohybrid light-harvesting architectures. Chem Sci 4:2036–2053. https://doi.org/10.1039/C3SC22317E

    CAS  Article  Google Scholar 

  78. Reil F, Hohenester U, Krenn JR, Leitner A (2008) Forster-type resonant energy transfer influenced by metal nanoparticles. Nano Lett 8:4128–4133. https://doi.org/10.1021/nl801480m

    CAS  Article  PubMed  Google Scholar 

  79. Romero E, Augulis R, Novoderezhkin VI, Ferretti M, Thieme J, Zigmantas D, Van Grondelle R (2014) Quantum coherence in photosynthesis for efficient solar-energy conversion. Nat Phys 10:676–682. https://doi.org/10.1038/nphys3017

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  80. Romero E, Novoderezhkin VI, Van Grondelle R (2017) Quantum design of photosynthesis for bio-inspired solar-energy conversion. Nature 543:355–365. https://doi.org/10.1038/nature22012

    CAS  Article  PubMed  Google Scholar 

  81. Sakai S, Noji T, Kondo M, Mizuno T, Dewa T, Ochiai T, Yamakawa H, Itoh S, Hashimoto H, Nango M (2013) Molecular assembly of zinc chlorophyll derivatives by using recombinant light-harvesting polypeptides with his-tag and immobilization on a gold electrode. Langmuir 29:5104–5109. https://doi.org/10.1021/la400059h

    CAS  Article  PubMed  Google Scholar 

  82. Sakakibara K, Granstrom M, Kilpelainen I, Helaja J, Heinilehto S, Inoue R, Kanaya T, Hill JP, Nakatsubo F, Tsujii Y, Ariga K (2013) Light-harvesting nanorods based on pheophorbide-appending cellulose. Biomacromol 14:3223–3230. https://doi.org/10.1021/bm400858v

    CAS  Article  Google Scholar 

  83. Scholes GD, Gould IR, Cogdell RJ, Fleming GR (1999) Ab Initio molecular orbital calculations of electronic couplings in the LH2 bacterial light-harvesting complex of Rps Acidophila. J Phys Chem B 103:2543–2553. https://doi.org/10.1021/jp9839753

    CAS  Article  Google Scholar 

  84. Senge MO, Ryan AA, Letchford KA, MacGowan SA, Mielke T (2014) Chlorophylls, symmetry, chirality, and photosynthesis. Symmetry 6:781–843. https://doi.org/10.3390/sym6030781

    CAS  Article  Google Scholar 

  85. Somsen OJ, van Grondelle R, van Amerongen H (1996) Spectral broadening of interacting pigments: polarized absorption by photosynthetic proteins. Biophys J 71:1934–1951. https://doi.org/10.1016/S0006-3495(96)79392-X

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  86. Springer JW, Parkes-Loach PS, Reddy KR, Krayer M, Jiao J, Lee GM, Niedzwiedzki DM, Harris MA, Kirmaier C, Bocian DF, Lindsey JS, Holten D, Loach PA (2012) Biohybrid photosynthetic antenna complexes for enhanced light-harvesting. J Am Chem Soc 134:4589–4599. https://doi.org/10.1021/ja207390y

    CAS  Article  Google Scholar 

  87. Steinberg-Yfrach G, Rigaud J-L, Durantini EN, Moore AL, Gust D, Moore TA (1998) Light-driven production of ATP catalysed by F0F1-ATP synthase in an artificial photosynthetic membrane. Nature 392:479–482. https://doi.org/10.1038/33116

    CAS  Article  PubMed  Google Scholar 

  88. Suga M, Akita F, Hirata K, Ueno G, Murakami H, Nakajima Y, Shimizu T, Yamashita K, Yamamoto M, Ago H, Shen J-R (2015) Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses. Nature 517:99–103. https://doi.org/10.1038/nature13991

    CAS  Article  PubMed  Google Scholar 

  89. Suga M, Akita F, Sugahara M, Kubo M, Nakajima Y, Nakane T, Yamashita K, Umena Y, Nakabayashi M, Yamane T, Nakano T, Suzuki M, Masuda T, Inoue S, Kimura T, Nomura T, Yonekura S, Yu L-J, Sakamoto T, Motomura T, Chen J-H, Kato Y, Noguchi T, Tono K, Joti Y, Kameshima T, Hatsui T, Nango E, Tanaka R, Naitow H, Matsuura Y, Yamashita A, Yamamoto M, Nureki O, Yabashi M, Ishikawa T, Iwata S, Shen J-R (2017) Light-induced structural changes and the site of O = O bond formation in PSII caught by XFEL. Nature 543:131–135. https://doi.org/10.1038/nature21400

    CAS  Article  PubMed  Google Scholar 

  90. Szychowski B, Pelton M, Daniel M-C (2019) Preparation and properties of plasmonic-excitonic nanoparticle assemblies. Nanophotonics 8:517–547. https://doi.org/10.1515/nanoph-2018-0168

    CAS  Article  Google Scholar 

  91. Taylor TC, Andersson I (1997) The structure of the complex between rubisco and its natural substrate ribulose 1, 5-bisphosphate. J Mol Biol 265:432–444. https://doi.org/10.1006/jmbi.1996.0738

    CAS  Article  PubMed  Google Scholar 

  92. Vats SK, Kumar S, Ahuja PS (2011) CO2 sequestration in plants: lesson from divergent strategies. Photosynthetica 49:481–496. https://doi.org/10.1007/s11099-011-0078-z

    CAS  Article  Google Scholar 

  93. Vidal J, Chollet R (1997) Regulatory phosphorylation of C4 PEP carboxylase. Trends Plant Sci 2:230–237. https://doi.org/10.1016/S1360-1385(97)89548-9

    Article  Google Scholar 

  94. Wei X, Su X, Cao P, Liu X, Chang W, Li M, Zhang X, Liu Z (2016) Structure of spinach photosystem II-LHC II supercomplex at 3.2Å resolution. Nature 534:69–74. https://doi.org/10.1038/nature18020

    CAS  Article  PubMed  Google Scholar 

  95. Wendling M, Przyjalgowski MA, Gülen D, Vulto SIE, Aartsma TJ, Van Grondelle R, Van Amerongen H (2002) The quantitative relationship between structure and polarized spectroscopy in the FMO complex of Prosthecochloris aestuarii: refining experiments and simulations. Photosynth Res 71:99–123. https://doi.org/10.1023/A:1014947732165

    CAS  Article  PubMed  Google Scholar 

  96. Wientjes E, Roest G, Croce R (2012) From red to blue far-red in Lhca4: how does the protein modulate the spectral properties of the pigments? Biochim Biophys Acta 1817:711–717. https://doi.org/10.1016/j.bbabio.2012.02.030

    CAS  Article  PubMed  Google Scholar 

  97. Xu P, Tian L, Kloz M, Croce R (2015) Molecular insights into Zeaxanthin-dependent quenching in higher plants. Sci Rep 5:13679. https://doi.org/10.1038/srep13679

    Article  PubMed  PubMed Central  Google Scholar 

  98. Yang W, Kang B, Voelz VA, Seo J (2017a) Control of porphyrin interactions via structural changes of a peptoid scaffold. Org Biomol Chem 15:9670–9679. https://doi.org/10.1039/C7OB02398G

    CAS  Article  PubMed  Google Scholar 

  99. Yang KD, Lee CW, Jin K, Im SW, Nam KT (2017b) Current status and bioinspired perspective of electrochemical conversion of CO2 to a long-chain hydrocarbon. J Phys Chem Lett 8:538–545. https://doi.org/10.1021/acs.jpclett.6b02748

    CAS  Article  PubMed  Google Scholar 

  100. Zhao L, Ming T, Shao L, Chen H, Wang J (2012) Plasmon-controlled forster resonance energy transfer. J Phys Chem C 116:8287–8296. https://doi.org/10.1021/jp300916a

    CAS  Article  Google Scholar 

  101. Zong H, Wang X, Mu X, Wang J, Sun M (2019) Plasmon-enhanced fluorescence resonance energy transfer. Chem Rec 19:818–842. https://doi.org/10.1002/tcr.201800181

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by Creative Materials Discovery Program through the National Research Foundation of Korea (NRF) funded by Ministry of Science and ICT (NRF-2017M3D1A1039377 to KTN and NRF-2018M3D1A1052659 to JS). KTN is also supported by the KIST-SNU Joint Research Lab project (2V06170) under the KIST Institutional Program funded by the Korea government (Ministry of Science, ICT & Future Planning), the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2017R1A2B3012003), and the Global Frontier R&D Program of the Center for Multiscale Energy System funded by the National Research Foundation under the Ministry of Science and ICT, Korea (2012M3A6A7054855).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Jiwon Seo or Ki Tae Nam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Im, S.W., Ha, H., Yang, W. et al. Light polarization dependency existing in the biological photosystem and possible implications for artificial antenna systems. Photosynth Res 143, 205–220 (2020). https://doi.org/10.1007/s11120-019-00682-1

Download citation

Keywords

  • Photosynthesis
  • Light polarization
  • Chiral assembly
  • Light harvesting
  • Energy transfer mechanism
  • Artificial antenna system