Skip to main content
Log in

Near-infrared in vitro measurements of photosystem I cofactors and electron-transfer partners with a recently developed spectrophotometer

  • Original article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

A kinetic-LED-array-spectrophotometer (Klas) was recently developed for measuring in vivo redox changes of P700, plastocyanin (PCy), and ferredoxin (Fd) in the near-infrared (NIR). This spectrophotometer is used in the present work for in vitro light-induced measurements with various combinations of photosystem I (PSI) from tobacco and two different cyanobacteria, spinach plastocyanin, cyanobacterial cytochrome c6 (cyt. c6), and Fd. It is shown that cyt. c6 oxidation contributes to the NIR absorption changes. The reduction of (FAFB), the terminal electron acceptor of PSI, was also observed and the shape of the (FAFB) NIR difference spectrum is similar to that of Fd. The NIR difference spectra of the electron-transfer cofactors were compared between different organisms and to those previously measured in vivo, whereas the relative absorption coefficients of all cofactors were determined by using single PSI turnover conditions. Thus, the (840 nm minus 965 nm) extinction coefficients of the light-induced species (oxidized minus reduced for PC and cyt. c6, reduced minus oxidized for (FAFB), and Fd) were determined with values of 0.207 ± 0.004, – 0.033 ± 0.006, – 0.036 ± 0.008, and – 0.021 ± 0.005 for PCy, cyt. c6, (FAFB) (single reduction), and Fd, respectively, by taking a reference value of + 1 for P700+. The fact that the NIR P700 coefficient is larger than that of PCy and much larger than that of other contributing species, combined with the observed variability in the NIR P700 spectral shape, emphasizes that deconvolution of NIR signals into different components requires a very precise determination of the P700 spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amunts A, Drory O, Nelson N (2007) The structure of a plant photosystem I supercomplex at 3.4 angstrom resolution. Nature 447:58–63

    Article  CAS  PubMed  Google Scholar 

  • Brettel K, Leibl W (2001) Electron transfer in photosystem I. Biochim Biophys Acta 1507:100–114

    Article  CAS  PubMed  Google Scholar 

  • Caffarri S, Croce R, Breton J, Bassi R (2001) The major antenna complex of photosystem II has a xanthophyll binding site not involved in light harvesting. J Biol Chem 276:35924–35933

    Article  CAS  PubMed  Google Scholar 

  • Cassan N, Lagoutte B, Sétif P (2005) Ferredoxin-NADP+ reductase: kinetics of electron transfer, transient intermediates, and catalytic activities studied by flash-absorption spectroscopy with isolated photosystem I and ferredoxin. J Biol Chem 280:25960–25972

    Article  CAS  PubMed  Google Scholar 

  • Cho YS, Wang QJ, Krogmann D, Whitmarsh J (1999) Extinction coefficients and midpoint potentials of cytochrome c(6) from the cyanobacteria Arthrospira maxima, Microcystis aeruginosa, and Synechocystis 6803. Biochim Biophys Acta 1413:92–97

    Article  CAS  PubMed  Google Scholar 

  • Christensen HEM, Conrad LS, Ulstrup J (1991) Isolation and purification of plastocyanin from spinach stored frozen using hydrophobic interaction and ion-exchange chromatography. Photosynth Res 28:89–93

    CAS  PubMed  Google Scholar 

  • Diaz-Quintana A, Leibl W, Bottin H, Sétif P (1998) Electron transfer in photosystem I reaction centers follows a linear pathway in which iron-sulfur cluster FB is the immediate electron donor to soluble ferredoxin. Biochemistry 37:3429–3439

    Article  CAS  PubMed  Google Scholar 

  • Drepper F, Hippler M, Nitschke W, Haehnel W (1996) Binding dynamics and electron transfer between plastocyanin and photosystem I. Biochemistry 35:1282–1295

    Article  CAS  PubMed  Google Scholar 

  • Eaton WA, Palmer G, Fee JA, Kimura T, Lovenberg W (1971) Tetrahedral iron in the active center of plant ferredoxins and beef adrenodoxin. Proc Natl Acad Sci USA 68:3015–3020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuyama K (2004) Structure and function of plant-type ferredoxins. Photosynth Res 81:289–301

    Article  CAS  PubMed  Google Scholar 

  • Hosein B, Palmer G (1983) The kinetics and mechanism of oxidation of reduced spinach ferredoxin by molecular oxygen and its reduced products. Biochim Biophys Acta 723:383–390

    Article  CAS  Google Scholar 

  • Jordan R, Nessau U, Schlodder E (1998) Charge recombination between the reduced iron-sulphur clusters and P700+. In: Garab G (ed) Photosynthesis: mechanisms and effects. Kluwer Acad. Publ, Dordrecht, pp 663–666

    Chapter  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411:909–917

    Article  CAS  PubMed  Google Scholar 

  • Karlusich JJP, Lodeyro AF, Carrillo N (2014) The long goodbye: the rise and fall of flavodoxin during plant evolution. J Exp Bot 65:5161–5178

    Article  CAS  Google Scholar 

  • Katoh S, Shiratori I, Takamiya A (1962) Purification and some properties of spinach plastocyanin. J Biochem 51:32

    Article  CAS  PubMed  Google Scholar 

  • Ke B (1973) The primary electron acceptor of photosystem I. Biochim Biophys Acta 301:1–33

    Article  CAS  PubMed  Google Scholar 

  • Kerfeld CA, Sawaya MR, Bottin H, Tran KT, Sugiura M, Cascio D, Desbois A, Yeates TO, Kirilovsky D, Boussac A (2003) Structural and EPR characterization of the soluble form of cytochrome c-550 and of the psbV2 gene product from the cyanobacterium Thermosynechococcus elongatus. Plant Cell Physiol 44:697–706

    Article  CAS  PubMed  Google Scholar 

  • Klughammer C, Schreiber U (2016) Deconvolution of ferredoxin, plastocyanin, and P700 transmittance changes in intact leaves with a new type of kinetic LED array spectrophotometer. Photosynth Res 128:195–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massey V (1959) The microestimation of succinate and the extinction coefficient of cytochrome-C. Biochim Biophys Acta 34:255–256

    Article  CAS  PubMed  Google Scholar 

  • Mathis P, Sétif P (1981) Near infra-red absorption spectra of the chlorophyll a cations and triplet state in vitro and in vivo. Isr J Chem 21:316–320

    Article  CAS  Google Scholar 

  • Merchant S, Bogorad L (1987) Metal ion regulated gene expression: use of a plastocyanin-less mutant of Chlamydomonas reinhardtii to study the Cu(II)-dependent expression of cytochrome c-552. EMBO J 6:2531–2535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mignée C, Mutoh R, Krieger-Liszkay A, Kurisu G, Sétif P (2017) Gallium ferredoxin as a tool to study the effects of ferredoxin binding to photosystem I without ferredoxin reduction. Photosynth Res 134:251–263

    Article  PubMed  CAS  Google Scholar 

  • Moal G, Lagoutte B (2012) Photo-induced electron transfer from photosystem I to NADP+: characterization and tentative simulation of the in vivo environment. Biochim Biophys Acta 1817:1635–1645

    Article  CAS  PubMed  Google Scholar 

  • Molina-Heredia FP, Wastl J, Navarro JA, Bendall DS, Hervas M, Howe CJ, De la Rosa MA (2003) A new function for an old cytochrome? Nature 424:33–34

    Article  CAS  PubMed  Google Scholar 

  • Nakamura A, Akai M, Yoshida E, Taki T, Watanabe T (2003) Reversed-phase HPLC determination of chlorophyll a’ and phylloquinone in photosystem I of oxygenic photosynthetic organisms—Universal existence of one chlorophyll a’ molecule in photosystem I. Eur J Biochem 270:2446–2458

    Article  CAS  PubMed  Google Scholar 

  • Qin X, Suga M, Kuang T, Shen JR (2015) Photosynthesis. Structural basis for energy transfer pathways in the plant PSI-LHCI supercomplex. Science 348:989–995

    Article  CAS  PubMed  Google Scholar 

  • Rawlings J, Siiman O, Gray HB (1974) Low temperature electronic absorption spectra of oxidized and reduced spinach ferredoxins. Evidence for nonequivalent iron(III) sites. Proc Natl Acad Sci USA 71:125–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rögner M, Nixon PJ, Diner BA (1990) Purification and characterization of photosystem I and photosystem II core complexes from wild-type and phycocyanin-deficient strains of the cyanobacterium Synechocystis PCC 6803. J Biol Chem 265:6189–6196

    Article  PubMed  Google Scholar 

  • Schreiber U (2017) Redox changes of ferredoxin, P700, and plastocyanin measured simultaneously in intact leaves. Photosynth Res 134:343–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schreiber U, Klughammer C (2016) Analysis of photosystem I donor and acceptor sides with a new type of online-deconvoluting kinetic LED-array spectrophotometer. Plant Cell Physiol 57:1454–1467

    CAS  PubMed  Google Scholar 

  • Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and nonphotochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62

    Article  CAS  PubMed  Google Scholar 

  • Schreiber U, Klughammer C, Neubauer C (1988) Measuring P700 absorbance changes around 830 nm with a new type of pulse modulation system. Z Naturforsch 43c:686–698

    Article  Google Scholar 

  • Sétif P (2001) Ferredoxin and flavodoxin reduction by photosystem I. Biochim Biophys Acta 1507:161–179

    Article  PubMed  Google Scholar 

  • Sétif P (2015) Electron-transfer kinetics in cyanobacterial cells: methyl viologen is a poor inhibitor of linear electron flow. Biochim Biophys Acta 1847:212–222

    Article  PubMed  CAS  Google Scholar 

  • Sétif P, Mutoh R, Kurisu G (2017) Dynamics and energetics of cyanobacterial photosystem I:ferredoxin complexes in different redox states. Biochim Biophys Acta 1858:483–496

    Article  CAS  Google Scholar 

  • Srinivasan N, Golbeck JH (2009) Protein-cofactor interactions in bioenergetic complexes: the role of the A1A and A1B phylloquinones in photosystem I. Biochim Biophys Acta 1787:1057–1088

    Article  CAS  PubMed  Google Scholar 

  • Stephens PJ, Thomson AJ, Keiderling TA, Rawlings J, Rao KK, Hall DO (1978) Cluster characterization in iron-sulfur proteins by magnetic circular dichroism. Proc Natl Acad Sci USA 75:5273–5275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tagawa K, Arnon DI (1968) Oxidation-reduction potentials and stoichiometry of electron transfer in ferredoxins. Biochim Biophys Acta 153:602–613

    Article  CAS  PubMed  Google Scholar 

  • Vangelder BF, Slater EC (1962) Extinction coefficient of cytochrome C. Biochim Biophys Acta 58:593

    Article  CAS  Google Scholar 

  • Witt H, Bordignon E, Carbonera D, Dekker JP, Karapetyan N, Teutloff C, Webber A, Lubitz W, Schlodder E (2003) Species-specific differences of the spectroscopic properties of P700—analysis of the influence of non-conserved amino acid residues by site-directed mutagenesis of photosystem I from Chlamydomonas reinhardtii. J Biol Chem 278:46760–46771

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, McSpadden B, Pakrasi HB, Whitmarsh J (1992) Copper-mediated regulation of cytochrome c553 and plastocyanin in the cyanobacterium synechocystis 6803. J Biol Chem 267:19054–19059

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A. K.-L. and P.S. most gratefully thank Dr. C. Klughammer for his help in installing the Klas-NIR spectrophotometer and in using the associated software. They also thank the LabEx Saclay Plant Sciences-SPS (ANR-10-LABX-0040-SPS) for its financial support for the acquisition of the Klas-NIR spectrophotometer. This work was also partially supported by the French Infrastructure for Integrated Structural Biology (FRISBI, ANR-10-INBS-05a) and by a grant from the Agence Nationale de la Recherche (RECYFUEL project, ANR-16-CE05-0026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Sétif.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 513 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sétif, P., Boussac, A. & Krieger-Liszkay, A. Near-infrared in vitro measurements of photosystem I cofactors and electron-transfer partners with a recently developed spectrophotometer. Photosynth Res 142, 307–319 (2019). https://doi.org/10.1007/s11120-019-00665-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-019-00665-2

Keywords

Navigation