Red-shifted light-harvesting system of freshwater eukaryotic alga Trachydiscus minutus (Eustigmatophyta, Stramenopila)

  • Radek Litvín
  • David BínaEmail author
  • Miroslava Herbstová
  • Marek Pazderník
  • Eva Kotabová
  • Zdenko Gardian
  • Martin Trtílek
  • Ondřej Prášil
  • František Vácha
Original article


Survival of phototrophic organisms depends on their ability to collect and convert enough light energy to support their metabolism. Phototrophs can extend their absorption cross section by using diverse pigments and by tuning the properties of these pigments via pigment–pigment and pigment–protein interaction. It is well known that some cyanobacteria can grow in heavily shaded habitats by utilizing far-red light harvested with far-red-absorbing chlorophylls d and f. We describe a red-shifted light-harvesting system based on chlorophyll a from a freshwater eustigmatophyte alga Trachydiscus minutus (Eustigmatophyceae, Goniochloridales). A comprehensive characterization of the photosynthetic apparatus of T. minutus is presented. We show that thylakoid membranes of T. minutus contain light-harvesting complexes of several sizes differing in the relative amount of far-red chlorophyll a forms absorbing around 700 nm. The pigment arrangement of the major red-shifted light-harvesting complex is similar to that of the red-shifted antenna of a marine alveolate alga Chromera velia. Evolutionary aspects of the algal far-red light-harvesting complexes are discussed. The presence of these antennas in eustigmatophyte algae opens up new ways to modify organisms of this promising group for effective use of far-red light in mass cultures.


Light-harvesting protein Violaxanthin Eustigmatophyta Red-shifted LHC Oligomeric LHC Chromatic acclimation 



This research was supported by the Czech Science Foundation under the Grant Numbers 19-28323X (Radek Litvín, David Bína) and GA15-22000S (Martin Trtílek), by institutional support RVO:60077344, Project LO1416 Algatech plus of the programme NPU I (Marek Pazderník, Eva Kotabová, Ondřej Prášil), and European Regional Development Fund (No. CZ.02.1.01/0.0/0.0/15_003/0000441, Zdenko Gardian). Skilled technical assistance of Ivana Hunalová and František Matoušek is gratefully acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11120_2019_662_MOESM1_ESM.doc (582 kb)
Supplementary material 1 (DOC 583 kb)


  1. Airs R, Temperton B, Sambles C, Farnham G, Skill S, Llewellyn C (2014) Chlorophyll f and chlorophyll d are produced in the cyanobacterium Chlorogloeopsis fritschii when cultured under natural light and near-infrared radiation. FEBS Lett 588:3770–3777CrossRefPubMedGoogle Scholar
  2. Alboresi A, Le Quiniou C, Yadav SKN, Scholz M, Meneghesso A, Gerotto C, Simionato D, Hippler M, Boekema EJ, Croce R, Morosinotto T (2016) Conservation of core complex subunits shaped the structure and function of photosystem I in the secondary endosymbiont alga Nannochloropsis gaditana. New Phytol 213:714–726CrossRefPubMedPubMedCentralGoogle Scholar
  3. Andersen RA (2004) Biology and systematics of heterokont and haptophyte algae. Am J Bot 91:1508–1522CrossRefGoogle Scholar
  4. Basso S, Simionato D, Gerotto C, Segalla A, Giacometti GM, Morosinotto T (2014) Characterization of the photosynthetic apparatus of the Eustigmatophycean Nannochloropsis gaditana: evidence of convergent evolution in the supramolecular organization of photosystem I. Biochim Biophys Acta 1837:306–314CrossRefPubMedGoogle Scholar
  5. Behrendt L, Brejnrod A, Schliep M, Sørensen SJ, Larkum AW, Kühl M (2015) Chlorophyll f-driven photosynthesis in a cavernous cyanobacterium. ISME J 9:2108–2111CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bína D, Gardian Z, Herbstová M, Kotabová E, Koník P, Litvín R, Prášil O, Tichý J, Vácha F (2014) Novel type of red-shifted chlorophyll a antenna complex from Chromera velia II. Biochemistry and spectroscopy. Biochim Biophys Acta 1837:802–810CrossRefPubMedGoogle Scholar
  7. Bína D, Herbstová M, Gardian Z, Vácha F, Litvín R (2016) Novel structural aspect of the diatom thylakoid membrane: lateral segregation of photosystem I under red-enhanced illumination. Sci Rep 6:25583CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bína D, Bouda K, Litvín R (2017a) A two-component nonphotochemical fluorescence quenching in eustigmatophyte algae. Photosynth Res 131:65–77CrossRefPubMedGoogle Scholar
  9. Bína D, Gardian Z, Herbstová M, Litvín R (2017b) Modular antenna of photosystem I in secondary plastids of red algal origin: a Nannochloropsis oceanica case study. Photosynth Res 131:255–266CrossRefPubMedGoogle Scholar
  10. Bína D, Durchan M, Kuznetsova V, Vácha F, Litvín R (2019) Energy transfer dynamics in a red-shifted violaxanthin-chlorophyll a light-harvesting complex. Biochim Biophys Acta 1860:111–120CrossRefGoogle Scholar
  11. Blankenship RE, Chen M (2013) Spectral expansion and antenna reduction can enhance photosynthesis for energy production. Curr Opin Chem Biol 17:457–461CrossRefPubMedGoogle Scholar
  12. Bonente G, Ballottari M, Truong TB, Morosinotto T, Ahn TK, Fleming GR, Niyogi KK, Bassi R (2011) Analysis of LhcSR3, a protein essential for feedback de-excitation in the green alga Chlamydomonas reinhardtii. PLoS Biol 9:e1000577CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bowler C, Vardi A, Allen AE (2010) Oceanographic and biogeochemical insights from diatom genomes. Annu Rev Mar Sci 2:333–365CrossRefGoogle Scholar
  14. Büchel C (2003) Fucoxanthin–chlorophyll proteins in diatoms: 18 and 19 kDa subunits assemble into different oligomeric states. Biochemistry 42:13027–13034CrossRefPubMedGoogle Scholar
  15. Büchel C, Garab G (1997) Organization of the pigment molecules in the chlorophyll a/c light-harvesting complex of Pleurochloris meiringensis (xanthophyceae). Characterization with circular dichroism and absorbance spectroscopy. J Photochem Photobiol, B 37:118–124CrossRefGoogle Scholar
  16. Chen M, Li Y, Birch D, Willows RD (2012) A cyanobacterium that contains chlorophyll f—a red-absorbing photopigment. FEBS Lett 586:3249–3254CrossRefPubMedGoogle Scholar
  17. Croce R, Morosinotto T, Castelletti S, Breton J, Bassi R (2002) The Lhca antenna complexes of higher plants photosystem I. Biochim Biophys Acta 1556:29–48CrossRefPubMedGoogle Scholar
  18. de Bianchi S, Betterle N, Kouřil R, Cazzaniga S, Boekema E, Bassi R, Dall’Osto L (2011) Arabidopsis mutants deleted in the light-harvesting protein Lhcb4 have a disrupted photosystem II macrostructure and are defective in photoprotection. Plant Cell 23:2659–2679CrossRefPubMedPubMedCentralGoogle Scholar
  19. Dekker JP, van Roon H, Boekema EJ (1999) Heptameric association of light-harvesting complex II trimers in partially solubilized photosystem II membranes. FEBS Lett 449:211–214CrossRefPubMedGoogle Scholar
  20. Dittami SM, Michel G, Collén J, Boyen C, Tonon T (2010) Chlorophyll-binding proteins revisited—a multigenic family of light-harvesting and stress proteins from a brown algal perspective. BMC Evol Biol 10:365CrossRefPubMedPubMedCentralGoogle Scholar
  21. Drop B, Webber-Birungi M, Yadav SKN, Filipowicz-Szymanska A, Fusetti F, Boekema EJ, Croce R (2014) Light-harvesting complex II (LHCII) and its supramolecular organization in Chlamydomonas reinhardtii. Biochim Biophys Acta 1837:63–72CrossRefPubMedPubMedCentralGoogle Scholar
  22. Durchan M, Tichý J, Litvín R, Šlouf V, Gardian Z, Hříbek P, Vácha F, Polívka T (2012) Role of carotenoids in light-harvesting processes in an antenna protein from the chromophyte Xanthonema debile. J Phys Chem B 116:8880–8889CrossRefPubMedGoogle Scholar
  23. Durchan M, Keşan G, Šlouf V, Fuciman M, Staleva H, Tichý J, Litvín R, Bína D, Vácha F, Polívka T (2014) Highly efficient energy transfer from a carbonyl carotenoid to chlorophyll a in the main light harvesting complex of Chromera velia. Biochim Biophys Acta 1837:1748–1755CrossRefPubMedGoogle Scholar
  24. Fawley K, Eliáš M, Fawley M (2014) The diversity and phylogeny of the commercially important algal class Eustigmatophyceae, including the new clade Goniochloridales. J Appl Phycol 26:1773–1782CrossRefGoogle Scholar
  25. Fujita Y, Ohki K (2004) On the 710 nm fluorescence emitted by the diatom Phaeodactylum tricornutum at room temperature. Plant Cell Physiol 45:392–397CrossRefPubMedGoogle Scholar
  26. Gan F, Bryant DA (2015) Adaptive and acclimative responses of cyanobacteria to far-red light. Environ Microbiol 17:3450–3465CrossRefPubMedGoogle Scholar
  27. Gardian Z, Tichý J, Vácha F (2011) Structure of PSI, PSII and antennae complexes from yellow-green alga Xanthonema debile. Photosynth Res 108:25–32CrossRefPubMedGoogle Scholar
  28. Gardian Z, Litvín R, Bína D, Vácha F (2014) Supramolecular organization of fucoxanthin–chlorophyll proteins in centric and pennate diatoms. Photosynth Res 121:79–86CrossRefPubMedGoogle Scholar
  29. Guillard R, Lorenzen C (1972) Yellow-green algae with chlorophyllide c. J Phycol 8:10–14Google Scholar
  30. Halldal P (1968) Photosynthetic capacities and photosynthetic action spectra of endozoic algae of the massive coral Favia. The Biological Bulletin 134:411–424CrossRefGoogle Scholar
  31. Haniewicz P, Abram M, Nosek L, Kirkpatrick J, El-Mohsnawy E, Olmos JDJ, Kouřil R, Kargul JM (2018) Molecular mechanisms of photoadaptation of photosystem I supercomplex from an evolutionary cyanobacterial/algal intermediate. Plant Physiol 176:1433–1451CrossRefPubMedPubMedCentralGoogle Scholar
  32. Herbstová M, Bína D, Koník P, Gardian Z, Vácha F, Litvín R (2015) Molecular basis of chromatic adaptation in pennate diatom Phaeodactylum tricornutum. Biochim Biophys Acta 1847:534–543CrossRefPubMedGoogle Scholar
  33. Herbstová M, Bína D, Kaňa R, Vácha F, Litvín R (2017) Red-light phenotype in a marine diatom involves a specialized oligomeric red-shifted antenna and altered cell morphology. Sci Rep 7:11976CrossRefPubMedPubMedCentralGoogle Scholar
  34. Hoffman GE, Sanchez Puerta MV, Delwiche CF (2011) Evolution of light-harvesting complex proteins from Chl c-containing algae. BMC Evol Biol 11:101CrossRefPubMedPubMedCentralGoogle Scholar
  35. Ihalainen JA, van Stokkum IHM, Gibasiewicz K, Germano M, van Grondelle R, Dekker JP (2005) Kinetics of excitation trapping in intact Photosystem I of Chlamydomonas reinhardtii and Arabidopsis thaliana. Biochim Biophys Acta 1706:267–275CrossRefPubMedGoogle Scholar
  36. Ikeda Y, Komura M, Watanabe M, Minami C, Koike H, Itoh S, Kashino Y, Satoh K (2008) Photosystem I complexes associated with fucoxanthin–chlorophyll-binding proteins from a marine centric diatom. Biochim Biophys Acta 1777:351–361CrossRefPubMedGoogle Scholar
  37. Janouškovec J, Horák A, Oborník M, Lukeš J, Keeling PJ (2010) A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc Natl Acad Sci USA 107:10949–10954CrossRefPubMedGoogle Scholar
  38. Järvi S, Suorsa M, Paakkarinen V, Aro E-M (2011) Optimized native gel systems for separation of thylakoid protein complexes: novel super- and mega-complexes. Biochem J 439:207–214CrossRefPubMedGoogle Scholar
  39. Jeffrey S, Mantoura R, Wright S (2005) Phytoplankton pigments in oceanography: guidelines to modern methods, 2nd edn. UNESCO Publishing, ParisGoogle Scholar
  40. Jiang J, Zhang H, Orf GS, Lu Y, Xu W, Harrington LB, Liu H, Lo CS, Blankenship RE (2014) Evidence of functional trimeric chlorophyll a/c2-peridinin proteins in the dinoflagellate Symbiodinium. Biochim Biophys Acta 1837:1904–1912CrossRefPubMedGoogle Scholar
  41. Keşan G, Litvín R, Bína D, Durchan M, Šlouf V, Polívka T (2016) Efficient light-harvesting using non-carbonyl carotenoids: energy transfer dynamics in the VCP complex from Nannochloropsis oceanica. Biochim Biophys Acta 1857:370–379CrossRefPubMedGoogle Scholar
  42. Koehne B, Elli G, Jennings RC, Wilhelm C, Trissl HW (1999) Spectroscopic and molecular characterization of a long wavelength absorbing antenna of Ostreobium sp. Biochim Biophys Acta 1412:94–107CrossRefPubMedGoogle Scholar
  43. Komenda J, Knoppová J, Kopečná J, Sobotka R, Halada P, Yu J, Nickelsen J, Boehm M, Nixon PJ (2012) The Psb27 assembly factor binds to the CP43 complex of photosystem II in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol 158:476–486CrossRefPubMedGoogle Scholar
  44. Kotabová E, Jarešová J, Kaňa R, Sobotka R, Bína D, Prášil O (2014) Novel type of red-shifted chlorophyll a antenna complex from Chromera velia. I. Physiological relevance and functional connection to Photosystems. Biochim Biophys Acta 1837:734–743CrossRefPubMedGoogle Scholar
  45. Latimer P (1959) Influence of selective light scattering on measurements of absorption spectra of Chlorella. Plant Physiol 34:193CrossRefPubMedPubMedCentralGoogle Scholar
  46. Litvín R, Bína D, Herbstová M, Gardian Z (2016) Architecture of the light-harvesting apparatus of the eustigmatophyte alga Nannochloropsis oceanica. Photosynth Res 130:137–150CrossRefPubMedGoogle Scholar
  47. Llansola-Portoles MJ, Litvín R, Ilioaia C, Pascal AA, Bína D, Robert B (2017) Pigment structure in the violaxanthin–chlorophyll-a-binding protein VCP. Photosynth Res 134:51–58CrossRefPubMedGoogle Scholar
  48. Miloslavina Y, Wehner A, Lambrev PH, Wientjes E, Reus M, Garab G, Croce R, Holzwarth AR (2008) Far-red fluorescence: a direct spectroscopic marker for LHCII oligomer formation in non-photochemical quenching. FEBS Lett 582:3625–3631CrossRefGoogle Scholar
  49. Miyashita H, Ikemoto H, Kurano N, Adachi K, Chihara M, Miyachi S (1996) Chlorophyl d as a major pigment. Nature 383:402CrossRefGoogle Scholar
  50. Morosinotto T, Breton J, Bassi R, Croce R (2003) The nature of a chlorophyll ligand in Lhca proteins determines the far red fluorescence emission typical of photosystem I. J Biol Chem 278:49223–49229CrossRefPubMedGoogle Scholar
  51. Nagao R, Tomo T, Noguchi E, Nakajima S, Suzuki T, Okumura A, Kashino Y, Mimuro M, Ikeuchi M, Enami I (2010) Purification and characterization of a stable oxygen-evolving Photosystem II complex from a marine centric diatom, Chaetoceros gracilis. Biochim Biophys Acta 1797:160–166CrossRefPubMedGoogle Scholar
  52. Nagao R, Takahashi S, Suzuki T, Dohmae N, Nakazato K, Tomo T (2013) Comparison of oligomeric states and polypeptide compositions of fucoxanthin chlorophyll a/c-binding protein complexes among various diatom species. Photosynth Res 117:281–288CrossRefPubMedGoogle Scholar
  53. Niedzwiedzki DM, Wolf BM, Blanenship RE (2019) Excitation energy transfer in the far-red absorbing violaxanthin/vaucheriaxanthin chlorophyll a complex from the eustigmatophyte alga FP5. Photosynth Res. CrossRefPubMedGoogle Scholar
  54. Oborník M, Modrý D, Lukeš M, Cernotíková-Stříbrná E, Cihlář J, Tesařová M, Kotabová E, Vancová M, Prášil O, Lukeš J (2012) Morphology, ultrastructure and life cycle of Vitrella brassicaformis n. sp, n. gen, a novel chromerid from the Great Barrier Reef. Protist 163:306–323CrossRefPubMedGoogle Scholar
  55. Ort DR, Merchant SS, Alric J et al (2015) Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc Natl Acad Sci USA 112:8529–8536CrossRefPubMedGoogle Scholar
  56. Passarini F, Wientjes E, van Amerongen H, Croce R (2010) Photosystem I light-harvesting complex Lhca4 adopts multiple conformations: red forms and excited-state quenching are mutually exclusive. Biochim Biophys Acta 1797:501–508CrossRefPubMedGoogle Scholar
  57. Přibyl P, Eliáš M, Cepák V, Lukavský J, Kaštánek P (2012) Zoosporogenesis, morphology, ultrastructure, pigment composition, and phylogenetic position of Trachydiscus minutus (Eustigmatophyceae, Heterokontophyta). J Phycol 48:231–242CrossRefPubMedGoogle Scholar
  58. Romero E, Mozzo M, van Stokkum IHM, Dekker JP, van Grondelle R, Croce R (2009) The origin of the low-energy form of photosystem I light-harvesting complex Lhca4: mixing of the lowest exciton with a charge-transfer state. Biophys J 96:L35–L37CrossRefPubMedPubMedCentralGoogle Scholar
  59. Schägger H, von Jagow G (1991) Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem 199:223–231CrossRefPubMedGoogle Scholar
  60. Schiller H, Senger H, Miyashita H, Miyachi S, Dau H (1997) Light-harvesting in Acaryochloris marina—spectroscopic characterization of a chlorophyll d-dominated photosynthetic antenna system. FEBS Lett 410:433–436CrossRefPubMedGoogle Scholar
  61. Ševčíková T, Horák A, Klimeš V, Zbránková V, Demir-Hilton E, Sudek S, Jenkins J, Schmutz J, Přibyl P, Fousek J, Vlček Č, Lang BF, Oborník M, Worden AZ, Eliáš M (2015) Updating algal evolutionary relationships through plastid genome sequencing: did alveolate plastids emerge through endosymbiosis of an ochrophyte? Sci Rep 5:10134CrossRefPubMedPubMedCentralGoogle Scholar
  62. Standfuss J, Terwisscha van Scheltinga AC, Lamborghini M, Kühlbrandt W (2005) Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 A resolution. EMBO J 24:919–928CrossRefPubMedPubMedCentralGoogle Scholar
  63. Sukenik A, Livne A, Apt KE, Grossman AR (2000) Characterisation of a gene encoding the light-harvesting violaxanthin–chlorophyll protein of Nannochloropsis sp. (Eustigmatophyceae). J Phycol 36:563–570CrossRefPubMedGoogle Scholar
  64. Sundarabalan B, Shanmugam P (2015) Modelling of underwater light fields in turbid and eutrophic waters: application and validation with experimental data. Ocean Sci 11:33–52CrossRefGoogle Scholar
  65. Tichý J, Gardian Z, Bína D, Koník P, Litvín R, Herbstová M, Pain A, Vácha F (2013) Light harvesting complexes of Chromera velia, photosynthetic relative of apicomplexan parasites. Biochim Biophys Acta 1827:723–729CrossRefPubMedGoogle Scholar
  66. Trissl H-W (1993) Long-wavelength absorbing antenna pigments and heterogeneous absorption bands concentrate excitons and increase absorption cross section. Photosynth Res 35:247–263CrossRefPubMedGoogle Scholar
  67. Umetani I, Kunugi M, Yokono M, Takabayashi A, Tanaka A (2018) Evidence of the supercomplex organization of photosystem II and light-harvesting complexes in Nannochloropsis granulata. Photosynth Res 136:49–61CrossRefPubMedGoogle Scholar
  68. Wahadoszamen Md, Berera R, Ara AM, Romero E, van Grondelle R (2012) Identification of two emitting sites in the dissipative state of the major light harvesting antenna. Phys Chem Chem Phys 14:759–766CrossRefPubMedGoogle Scholar
  69. Wahadoszamen Md, Belgio E, Rahman MA, Ara AM, Ruban AV, van Grondelle R (2016) Identification and characterization of multiple emissive species in aggregated minor antenna complexes. Biochim Biophys Acta 1857:1917–1924CrossRefPubMedGoogle Scholar
  70. Wilhelm C, Jakob T (2006) Uphill energy transfer from long-wavelength absorbing chlorophylls to PS II in Ostreobium sp. is functional in carbon assimilation. Photosynth Res 87:323–329CrossRefPubMedGoogle Scholar
  71. Wolf BM, Niedzwiedzki DM, Magdaong NCM, Roth R, Goodenough U, Blankenship RE (2018) Characterization of a newly isolated freshwater Eustigmatophyte alga capable of utilizing far-red light as its sole light source. Photosynth Res 135:177–189CrossRefPubMedGoogle Scholar
  72. Zhu S-H, Green BR (2010) Photoprotection in the diatom Thalassiosira pseudonana: role of LI818-like proteins in response to high light stress. Biochim Biophys Acta 1797:1449–1457CrossRefPubMedGoogle Scholar
  73. Zouni A, Kern J, Frank J, Hellweg T, Behlke J, Saenger W, Irrgang K-D (2005) Size determination of cyanobacterial and higher plant Photosystem II by gel permeation chromatography, light scattering, and ultracentrifugation. Biochemistry 44:4572–4581CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Radek Litvín
    • 1
    • 2
  • David Bína
    • 1
    • 2
    Email author
  • Miroslava Herbstová
    • 1
    • 2
  • Marek Pazderník
    • 1
    • 3
  • Eva Kotabová
    • 1
    • 3
  • Zdenko Gardian
    • 1
    • 2
  • Martin Trtílek
    • 4
  • Ondřej Prášil
    • 1
    • 3
  • František Vácha
    • 1
    • 2
  1. 1.Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
  2. 2.Biology CentreThe Czech Academy of SciencesČeské BudějoviceCzech Republic
  3. 3.Institute of MicrobiologyThe Czech Academy of SciencesTřeboňCzech Republic
  4. 4.PSI (Photon Systems Instruments)DrásovCzech Republic

Personalised recommendations