Advertisement

Effects of excess light energy on excitation-energy dynamics in a pennate diatom Phaeodactylum tricornutum

  • Ryo NagaoEmail author
  • Yoshifumi Ueno
  • Makio Yokono
  • Jian-Ren Shen
  • Seiji AkimotoEmail author
Original Article
  • 127 Downloads

Abstract

Controlling excitation energy flow is a fundamental ability of photosynthetic organisms to keep a better performance of photosynthesis. Among the organisms, diatoms have unique light-harvesting complexes, fucoxanthin chlorophyll (Chl) a/c-binding proteins. We have recently investigated light-adaptation mechanisms of a marine centric diatom, Chaetoceros gracilis, by spectroscopic techniques. However, it remains unclear how pennate diatoms regulate excitation energy under different growth light conditions. Here, we studied light-adaptation mechanisms in a marine pennate diatom Phaeodactylum tricornutum grown at 30 µmol photons m−2 s−1 and further incubated for 24 h either in the dark, or at 30 or 300 µmol photons m−2 s−1 light intensity, by time-resolved fluorescence (TRF) spectroscopy. The high-light incubated cells showed no detectable oxygen-evolving activity of photosystem II, indicating the occurrence of a severe photodamage. The photodamaged cells showed alterations of steady-state absorption and fluorescence spectra and TRF spectra compared with the dark and low-light adapted cells. In particular, excitation-energy quenching is significantly accelerated in the photodamaged cells as shown by mean lifetime analysis of the Chl fluorescence. These spectral changes by the high-light treatment may result from arrangements of pigment–protein complexes to maintain the photosynthetic performance under excess light illumination. These growth-light dependent spectral properties in P. tricornutum are largely different from those in C. gracilis, thus providing insights into the different light-adaptation mechanisms between the pennate and centric diatoms.

Keywords

Pennate diatom FCP Low-energy Chl Photoinhibition Time-resolved fluorescence spectroscopy 

Abbreviations

Chl

Chlorophyll

DI

Dark incubated

FCP

Fucoxanthin chlorophyll a/c-binding protein

FDA

Fluorescence decay-associated

HI

High-light incubated

LI

Low-light incubated

OD750

Optical density at 750 nm

PPFD

Photosynthetic photon flux density

PSI

Photosystem I

PSII

Photosystem II

RC

Reaction center

TRF

Time-resolved fluorescence

Notes

Acknowledgements

This work was supported by the Grants-in-Aid for Scientific Research from Japan Society for the Promotion of Science JP17K07442 (to R. N.), JP17H06433 (to J.-R. S.), and JP16H06553 (to S. A.).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Ahn TK, Avenson TJ, Ballottari M, Cheng Y-C, Niyogi KK, Bassi R, Fleming GR (2008) Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein. Science 320:794–797CrossRefGoogle Scholar
  2. Akimoto S, Yokono M, Hamada F, Teshigahara A, Aikawa S, Kondo A (2012) Adaptation of light-harvesting systems of Arthrospira platensis to light conditions, probed by time-resolved fluorescence spectroscopy. Biochim Biophys Acta 1817:1483–1489CrossRefGoogle Scholar
  3. Andrizhiyevskaya EG, Chojnicka A, Bautista JA, Diner BA, van Grondelle R, Dekker JP (2005) Origin of the F685 and F695 fluorescence in Photosystem II. Photosynth Res 84:173–180CrossRefGoogle Scholar
  4. Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M, Brzezinski MA, Chaal BK, Chiovitti A, Davis AK, Demarest MS, Detter JC, Glavina T, Goodstein D, Hadi MZ, Hellsten U, Hildebrand M, Jenkins BD, Jurka J, Kapitonov VV, Kröger N, Lau WWY, Lane TW, Larimer FW, Lippmeier JC, Lucas S, Medina M, Montsant A, Obornik M, Parker MS, Palenik B, Pazour GJ, Richardson PM, Rynearson TA, Saito MA, Schwartz DC, Thamatrakoln K, Valentin K, Vardi A, Wilkerson FP, Rokhsar DS (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86CrossRefGoogle Scholar
  5. Biggins J, Bruce D (1989) Regulation of excitation energy transfer in organisms containing phycobilins. Photosynth Res 20:1–34CrossRefGoogle Scholar
  6. Blankenship RE (2014) Molecular mechanisms of photosynthesis, 2nd edn. Wiley-Blackwell, OxfordGoogle Scholar
  7. Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, Maheswari U, Martens C, Maumus F, Otillar RP, Rayko E, Salamov A, Vandepoele K, Beszteri B, Gruber A, Heijde M, Katinka M, Mock T, Valentin K, Verret F, Berges JA, Brownlee C, Cadoret JP, Chiovitti A, Choi CJ, Coesel S, De Martino A, Detter JC, Durkin C, Falciatore A, Fournet J, Haruta M, Huysman MJJ, Jenkins BD, Jiroutova K, Jorgensen RE, Joubert Y, Kaplan A, Kröger N, Kroth PG, La Roche J, Lindquist E, Lommer M, Martin-Jézéquel V, Lopez PJ, Lucas S, Mangogna M, McGinnis K, Medlin LK, Montsant A, Oudot-Le Secq MP, Napoli C, Obornik M, Parker MS, Petit JL, Porcel BM, Poulsen N, Robison M, Rychlewski L, Rynearson TA, Schmutz J, Shapiro H, Siaut M, Stanley M, Sussman MR, Taylor AR, Vardi A, von Dassow P, Vyverman W, Willis A, Wyrwicz LS, Rokhsar DS, Weissenbach J, Armbrust EV, Green BR, Van de Peer Y, Grigoriev IV (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244CrossRefGoogle Scholar
  8. Brettel K, Leibl W (2001) Electron transfer in photosystem I. Biochim Biophys Acta 1507:100–114CrossRefGoogle Scholar
  9. Caffarri S, Broess K, Croce R, van Amerongen H (2011) Excitation energy transfer and trapping in higher plant photosystem II complexes with different antenna sizes. Biophys J 100:2094–2103CrossRefGoogle Scholar
  10. Casazza AP, Szczepaniak M, Müller MG, Zucchelli G, Holzwarth AR (2010) Energy transfer processes in the isolated core antenna complexes CP43 and CP47 of photosystem II. Biochim Biophys Acta 1797:1606–1616CrossRefGoogle Scholar
  11. Chukhutsina VU, Büchel C, van Amerongen H (2013) Variations in the first steps of photosynthesis for the diatom Cyclotella meneghiniana grown under different light conditions. Biochim Biophys Acta 1827:10–18CrossRefGoogle Scholar
  12. Croce R, van Amerongen H (2013) Light-harvesting in photosystem I. Photosynth Res 116:153–166CrossRefGoogle Scholar
  13. Croce R, Zucchelli G, Garlaschi FM, Jennings RC (1998) A thermal broadening study of the antenna chlorophylls in PSI-200, LHCI, and PSI core. Biochemistry 37:17355–17360CrossRefGoogle Scholar
  14. Croce R, Dorra D, Holzwarth AR, Jennings RC (2000) Fluorescence decay and spectral evolution in intact photosystem I of higher plants. Biochemistry 39:6341–6348CrossRefGoogle Scholar
  15. Depauw FA, Rogato A, Ribera d’Alcalá M, Falciatore A (2012) Exploring the molecular basis of responses to light in marine diatoms. J Exp Bot 63:1575–1591CrossRefGoogle Scholar
  16. Diner BA, Rappaport F (2002) Structure, dynamics, and energetics of the primary photochemistry of photosystem II of oxygenic photosynthesis. Annu Rev Plant Biol 53:551–580CrossRefGoogle Scholar
  17. Edelman M, Mattoo AK (2008) D1-protein dynamics in photosystem II: the lingering enigma. Photosynth Res 98:609–620CrossRefGoogle Scholar
  18. Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, Taylor FJR (2004) The evolution of modern eukaryotic phytoplankton. Science 305:354–360CrossRefGoogle Scholar
  19. Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240CrossRefGoogle Scholar
  20. Flori S, Jouneau PH, Bailleul B, Gallet B, Estrozi LF, Moriscot C, Bastien O, Eicke S, Schober A, Bártulos CR, Maréchal E, Kroth PG, Petroutsos D, Zeeman S, Breyton C, Schoehn G, Falconet D, Finazzi G (2017) Plastid thylakoid architecture optimizes photosynthesis in diatoms. Nat Commun 8:15885CrossRefGoogle Scholar
  21. Gobets B, van Grondelle R (2001) Energy transfer and trapping in photosystem I. Biochim Biophys Acta 1507:80–99CrossRefGoogle Scholar
  22. Gobets B, van Stokkum IHM, Rögner M, Kruip J, Schlodder E, Karapetyan NV, Dekker JP, van Grondelle R (2001) Time-resolved fluorescence emission measurements of photosystem I particles of various cyanobacteria: a unified compartmental model. Biophys J 81:407–424CrossRefGoogle Scholar
  23. Goss R, Lepetit B (2015) Biodiversity of NPQ. J Plant Physiol 172:13–32CrossRefGoogle Scholar
  24. Green BR, Pichersky E (1994) Hypothesis for the evolution of three-helix Chl a/b and Chl a/c light-harvesting antenna proteins from two-helix and four-helix ancestors. Photosynth Res 39:149–162CrossRefGoogle Scholar
  25. Groot M-L, Peterman EJG, van Stokkum IHM, Dekker JP, van Grondelle R (1995) Triplet and fluorescing states of the CP47 antenna complex of photosystem II studied as a function of temperature. Biophys J 68:281–290CrossRefGoogle Scholar
  26. Grouneva I, Rokka A, Aro E-M (2011) The thylakoid membrane proteome of two marine diatoms outlines both diatom-specific and species-specific features of the photosynthetic machinery. J Proteome Res 10:5338–5353CrossRefGoogle Scholar
  27. Gundermann K, Schmidt M, Weisheit W, Mittag M, Büchel C (2013) Identification of several sub-populations in the pool of light harvesting proteins in the pennate diatom Phaeodactylum tricornutum. Biochim Biophys Acta 1827:303–310CrossRefGoogle Scholar
  28. Hamada F, Yokono M, Hirose E, Murakami A, Akimoto S (2012) Excitation energy relaxation in a symbiotic cyanobacterium, Prochloron didemni, occurring in coral-reef ascidians, and in a free-living cyanobacterium, Prochlorothrix hollandica. Biochim Biophys Acta 1817:1992–1997CrossRefGoogle Scholar
  29. Hamada F, Murakami A, Akimoto S (2017) Adaptation of divinyl chlorophyll a/b-containing cyanobacterium to different light conditions: three strains of Prochlorococcus marinus. J Phys Chem B 121:9081–9090CrossRefGoogle Scholar
  30. Horton P, Ruban A (2005) Molecular design of the photosystem II light-harvesting antenna: photosynthesis and photoprotection. J Exp Bot 56:365–373CrossRefGoogle Scholar
  31. Ihalainen JA, van Stokkum IHM, Gibasiewicz K, Germano M, van Grondelle R, Dekker JP (2005) Kinetics of excitation trapping in intact Photosystem I of Chlamydomonas reinhardtii and Arabidopsis thaliana. Biochim Biophys Acta 1706:267–275CrossRefGoogle Scholar
  32. Ikeda Y, Komura M, Watanabe M, Minami C, Koike H, Itoh S, Kashino Y, Satoh K (2008) Photosystem I complexes associated with fucoxanthin-chlorophyll-binding proteins from a marine centric diatom, Chaetoceros gracilis. Biochim Biophys Acta 1777:351–361CrossRefGoogle Scholar
  33. Jahns P, Holzwarth AR (2012) The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim Biophys Acta 1817:182–193CrossRefGoogle Scholar
  34. Kashino Y, Kudoh S (2003) Concerted response of xanthophyll-cycle pigments in a marine diatom, Chaetoceros gracilis, to shifts in light condition. Phycol Res 51:168–172CrossRefGoogle Scholar
  35. Lavaud J, Lepetit B (2013) An explanation for the inter-species variability of the photoprotective non-photochemical chlorophyll fluorescence quenching in diatoms. Biochim Biophys Acta 1827:294–302CrossRefGoogle Scholar
  36. Lepetit B, Volke D, Szabó M, Hoffmann R, Garab G, Wilhelm C, Goss R (2007) Spectroscopic and molecular characterization of the oligomeric antenna of the diatom Phaeodactylum tricornutum. Biochemistry 46:9813–9822CrossRefGoogle Scholar
  37. Lepetit B, Volke D, Gilbert M, Wilhelm C, Goss R (2010) Evidence for the existence of one antenna-associated, lipid-dissolved and two protein-bound pools of diadinoxanthin cycle pigments in diatoms. Plant Physiol 154:1905–1920CrossRefGoogle Scholar
  38. Lepetit B, Gélin G, Lepetit M, Sturm S, Vugrinec S, Rogato A, Kroth PG, Falciatore A, Lavaud J (2017) The diatom Phaeodactylum tricornutum adjusts nonphotochemical fluorescence quenching capacity in response to dynamic light via fine-tuned Lhcx and xanthophyll cycle pigment synthesis. New Phytol 214:205–218CrossRefGoogle Scholar
  39. Lohr M, Wilhelm C (1999) Algae displaying the diadinoxanthin cycle also possess the violaxanthin cycle. Proc Natl Acad Sci U S A 96:8784–8789CrossRefGoogle Scholar
  40. Long SP, Humphries S, Falkowski PG (1994) Photoinhibition of photosynthesis in nature. Annu Rev Plant Physiol Plant Mol Biol 45:633–662CrossRefGoogle Scholar
  41. Ma Y-Z, Holt NE, Li X-P, Niyogi KK, Fleming GR (2003) Evidence for direct carotenoid involvement in the regulation of photosynthetic light harvesting. Proc Natl Acad Sci U S A 100:4377–4382CrossRefGoogle Scholar
  42. MacIntyre HL, Kana TM, Geider RJ (2000) The effect of water motion on short-term rates of photosynthesis by marine phytoplankton. Trends Plant Sci 5:12–17CrossRefGoogle Scholar
  43. Miloslavina Y, Grouneva I, Lambrev PH, Lepetit B, Goss R, Wilhelm C, Holzwarth AR (2009) Ultrafast fluorescence study on the location and mechanism of non-photochemical quenching in diatoms. Biochim Biophys Acta 1787:1189–1197CrossRefGoogle Scholar
  44. Mimuro M, Akimoto S, Tomo T, Yokono M, Miyashita H, Tsuchiya T (2007) Delayed fluorescence observed in the nanosecond time region at 77 K originates directly from the photosystem II reaction center. Biochim Biophys Acta 1767:327–334CrossRefGoogle Scholar
  45. Mimuro M, Yokono M, Akimoto S (2010) Variations in photosystem I properties in the primordial cyanobacterium Gloeobacter violaceus PCC 7421. Photochem Photobiol 86:62–69CrossRefGoogle Scholar
  46. Müller P, Li X-P, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566CrossRefGoogle Scholar
  47. Murata N, Allakhverdiev SI, Nishiyama Y (2012) The mechanism of photoinhibition in vivo: re-evaluation of the roles of catalase, α-tocopherol, non-photochemical quenching, and electron transport. Biochim Biophys Acta 1817:1127–1133CrossRefGoogle Scholar
  48. Nagao R, Ishii A, Tada O, Suzuki T, Dohmae N, Okumura A, Iwai M, Takahashi T, Kashino Y, Enami I (2007) Isolation and characterization of oxygen-evolving thylakoid membranes and Photosystem II particles from a marine diatom Chaetoceros gracilis. Biochim Biophys Acta 1767:1353–1362CrossRefGoogle Scholar
  49. Nagao R, Tomo T, Noguchi E, Nakajima S, Suzuki T, Okumura A, Kashino Y, Mimuro M, Ikeuchi M, Enami I (2010) Purification and characterization of a stable oxygen-evolving Photosystem II complex from a marine centric diatom, Chaetoceros gracilis. Biochim Biophys Acta 1797:160–166CrossRefGoogle Scholar
  50. Nagao R, Takahashi S, Suzuki T, Dohmae N, Nakazato K, Tomo T (2013a) Comparison of oligomeric states and polypeptide compositions of fucoxanthin chlorophyll a/c-binding protein complexes among various diatom species. Photosynth Res 117:281–288CrossRefGoogle Scholar
  51. Nagao R, Yokono M, Akimoto S, Tomo T (2013b) High excitation energy quenching in fucoxanthin chlorophyll a/c-binding protein complexes from the diatom Chaetoceros gracilis. J Phys Chem B 117:6888–6895CrossRefGoogle Scholar
  52. Nagao R, Yokono M, Teshigahara A, Akimoto S, Tomo T (2014a) Light-harvesting ability of the fucoxanthin chlorophyll a/c-binding protein associated with photosystem II from the diatom Chaetoceros gracilis as revealed by picosecond time-resolved fluorescence spectroscopy. J Phys Chem B 118:5093–5100CrossRefGoogle Scholar
  53. Nagao R, Yokono M, Tomo T, Akimoto S (2014b) Control mechanism of excitation energy transfer in a complex consisting of photosystem II and fucoxanthin chlorophyll a/c-binding protein. J Phys Chem Lett 5:2983–2987CrossRefGoogle Scholar
  54. Nagao R, Tomo T, Narikawa R, Enami I, Ikeuchi M (2016) Conversion of photosystem II dimer to monomers during photoinhibition is tightly coupled with decrease in oxygen-evolving activity in the diatom Chaetoceros gracilis. Photosynth Res 130:83–91CrossRefGoogle Scholar
  55. Nagao R, Ueno Y, Akita F, Suzuki T, Dohmae N, Akimoto S, Shen J-R (2018a) Biochemical characterization of photosystem I complexes having different subunit compositions of fucoxanthin chlorophyll a/c-binding proteins in the diatom Chaetoceros gracilis. Photosynth Res  https://doi.org/10.1007/s11120-018-0576-y Google Scholar
  56. Nagao R, Ueno Y, Yokono M, Shen J-R, Akimoto S (2018b) Alterations of pigment composition and their interactions in response to different light conditions in the diatom Chaetoceros gracilis probed by time-resolved fluorescence spectroscopy. Biochim Biophys Acta 1859:524–530CrossRefGoogle Scholar
  57. Nagao R, Yokono M, Ueno Y, Shen J-R, Akimoto S (2019) Low-energy chlorophylls in fucoxanthin chlorophyll a/c-binding protein conduct excitation energy transfer to photosystem I in diatoms. J Phys Chem B 123:66–70CrossRefGoogle Scholar
  58. Nishiyama Y, Allakhverdiev SI, Yamamoto H, Hayashi H, Murata N (2004) Singlet oxygen inhibits the repair of photosystem II by suppressing the translation elongation of the D1 protein in Synechocystis sp. PCC 6803. Biochemistry 43:11321–11330CrossRefGoogle Scholar
  59. Ruban AV, Berera R, Ilioaia C, van Stokkum IHM, Kennis JTM, Pascal AA, van Amerongen H, Robert B, Horton P, van Grondelle R (2007) Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 450:575–578CrossRefGoogle Scholar
  60. Ruban AV, Johnson MP, Duffy CDP (2012) The photoprotective molecular switch in the photosystem II antenna. Biochim Biophys Acta 1817:167–181CrossRefGoogle Scholar
  61. Shibata Y, Nishi S, Kawakami K, Shen J-R, Renger T (2013) Photosystem II does not possess a simple excitation energy funnel: time-resolved fluorescence spectroscopy meets theory. J Am Chem Soc 135:6903–6914CrossRefGoogle Scholar
  62. Slavov C, Ballottari M, Morosinotto T, Bassi R, Holzwarth AR (2008) Trap-limited charge separation kinetics in higher plant photosystem I complexes. Biophys J 94:3601–3612CrossRefGoogle Scholar
  63. Taddei L, Chukhutsina VU, Lepetit B, Stella GR, Bassi R, van Amerongen H, Bouly J-P, Jaubert M, Finazzi G, Falciatore A (2018) Dynamic changes between two LHCX-related energy quenching sites control diatom photoacclimation. Plant Physiol 177:953–965CrossRefGoogle Scholar
  64. Tyystjärvi E (2008) Photoinhibition of photosystem II and photodamage of the oxygen evolving manganese cluster. Coord Chem Rev 252:361–376CrossRefGoogle Scholar
  65. van der Weij-de Wit CD, Ihalainen JA, van Grondelle R, Dekker JP (2007) Excitation energy transfer in native and unstacked thylakoid membranes studied by low temperature and ultrafast fluorescence spectroscopy. Photosynth Res 93:173–182CrossRefGoogle Scholar
  66. van Grondelle R, Dekker JP, Gillbro T, Sundstrom V (1994) Energy transfer and trapping in photosynthesis. Biochim Biophys Acta 1187:1–65CrossRefGoogle Scholar
  67. Veith T, Büchel C (2007) The monomeric photosystem I-complex of the diatom Phaeodactylum tricornutum binds specific fucoxanthin chlorophyll proteins (FCPs) as light-harvesting complexes. Biochim Biophys Acta 1767:1428–1435CrossRefGoogle Scholar
  68. Wang W, Yu L-J, Xu C, Tomizaki T, Zhao S, Umena Y, Chen X, Qin X, Xin Y, Suga M, Han G, Kuang T, Shen J-R (2019) Structural basis for blue-green light harvesting and energy dissipation in diatoms. Science 363:eaav0365CrossRefGoogle Scholar
  69. Wlodarczyk LM, Dinc E, Croce R, Dekker JP (2016) Excitation energy transfer in Chlamydomonas reinhardtii deficient in the PSI core or the PSII core under conditions mimicking state transitions. Biochim Biophys Acta 1857:625–633CrossRefGoogle Scholar
  70. Yokono M, Akimoto S, Koyama K, Tsuchiya T, Mimuro M (2008a) Energy transfer processes in Gloeobacter violaceus PCC 7421 that possesses phycobilisomes with a unique morphology. Biochim Biophys Acta 1777:55–65CrossRefGoogle Scholar
  71. Yokono M, Akimoto S, Tanaka A (2008b) Seasonal changes of excitation energy transfer and thylakoid stacking in the evergreen tree Taxus cuspidata: how does it divert excess energy from photosynthetic reaction center? Biochim Biophys Acta 1777:379–387CrossRefGoogle Scholar
  72. Yokono M, Murakami A, Akimoto S (2011) Excitation energy transfer between photosystem II and photosystem I in red algae: larger amounts of phycobilisome enhance spillover. Biochim Biophys Acta 1807:847–853CrossRefGoogle Scholar
  73. Yokono M, Tomo T, Nagao R, Ito H, Tanaka A, Akimoto S (2012) Alterations in photosynthetic pigments and amino acid composition of D1 protein change energy distribution in photosystem II. Biochim Biophys Acta 1817:754–759CrossRefGoogle Scholar
  74. Yokono M, Nagao R, Tomo T, Akimoto S (2015a) Regulation of excitation energy transfer in diatom PSII dimer: how does it change the destination of excitation energy? Biochim Biophys Acta 1847:1274–1282CrossRefGoogle Scholar
  75. Yokono M, Takabayashi A, Akimoto S, Tanaka A (2015b) A megacomplex composed of both photosystem reaction centres in higher plants. Nat Commun 6:6675CrossRefGoogle Scholar
  76. Yokono M, Takabayashi A, Kishimoto J, Fujita T, Iwai M, Murakami A, Akimoto S, Tanaka A (2019) The PSI–PSII megacomplex in green plants. Plant Cell Physiol  https://doi.org/10.1093/pcp/pcz026 Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Research Institute for Interdisciplinary Science and Graduate School of Natural Science and TechnologyOkayama UniversityOkayamaJapan
  2. 2.Graduate School of ScienceKobe UniversityKobeJapan
  3. 3.Nippon Flour Mills Co., LtdInnovation CenterAtsugiJapan

Personalised recommendations