Photosynthesis Research

, Volume 139, Issue 1–3, pp 53–65 | Cite as

Structure–function of the cytochrome b6f lipoprotein complex: a scientific odyssey and personal perspective

  • William A. CramerEmail author


Structure–function studies of the cytochrome b6f complex, the central hetero-oligomeric membrane protein complex in the electron transport chain of oxygenic photosynthesis, which formed the basis for a high-resolution (2.5 Å) crystallographic solution of the complex, are described. Structure–function differences between the structure of subunits of the bc complexes, b6f, and bc1 from mitochondria and photosynthetic bacteria, which are often assumed to function identically, are discussed. Major differences which suggest that quinone-dependent electron transport pathways can vary in b6f and bc1 complexes are as follows: (a) an additional c-type heme, cn, and bound single copies of chlorophyll a and β-carotene in the b6f complex; and (b) a cyclic electron transport pathway that encompasses the b6f and PSI reaction center complexes. The importance of including lipid in crystallization of the cytochrome complex, or with any hetero-oligomeric membrane protein complex, is emphasized, and consequences to structure–function of b6f being a lipoprotein complex discussed, including intra-protein dielectric heterogeneity and resultant pathways of trans-membrane electron transport. The role of the b6f complex in trans-membrane signal transduction from reductant generated on the p-side of the electron transport chain to the regulation of light energy to the two photosystems by trans-side phosphorylation of the light-harvesting chlorophyll protein is presented. Regarding structure aspects relevant to plastoquinol-quinone entrance-egress: (i) modification of the p-side channel for plastoquinone access to the iron-sulfur protein would change the rate-limiting step in electron transport; (ii) the narrow niche for entry of plastoquinol into b6f from the PSII reaction center complex would seem to require close proximity between the complexes.


Cytochrome b6f bc1 complexes Cytochrome f Crystal structure Heme cn Lipoprotein Plastoquinone Rate-limiting step Super-complex Trans-membrane signaling 



Circular dichroism





n, p

Electrochemically negative, positive sides of membrane


Dioleoyl-phosphatidyl choline


Electron paramagnetic resonance


Iron-sulfur protein


Protein data base


Photosynthetic electron transfer


Plastoquinone, -ol


Photosystems I, II


Trans-membrane helix



\(\Delta {\tilde \mu }_{{\text{H}}^+}\)

Trans-membrane proton electrochemical potential gradient



Colleagues, whose studies have contributed to the information and concepts obtained in our laboratory in recent years, are reported here: R. Agarwal7, D. Baniulis6, S. Bhaduri1, S. Saif Hasan1, D. Huang (deceased), G. Kurisu9, S. Naurin1, S. Savikhin2, S. K. Singh8, J. L. Smith11, V. Stadnytskyi2,3, A. Szczepaniak12, J.P. Whitelegge5, E. Yamashita10, S.D. Zakharov1, M. Zhalnina and H. Zhang4 who are presently associated, respectively, with the Departments of Biological Sciences1 and Physics2 Purdue University; 3Lab of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, MD USA; 4SSCI, West Lafayette, IN; 5Pasarow Mass Spectrometry Laboratory, NPI-Semel Institute, David Geffen School of Medicine, UCLA; 6Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Lithuania; 7Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India; 8Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA; 9Lab. of Protein Crystallography, Lab. of Protein Databases (PDB), Institute for Protein Research, Osaka University; 10Institute for Protein Research, Osaka University, Japan;11Life Sciences Institute, University of Michigan; 12Dept. of Biotechnology, University of Wroclaw, Poland. Colleagues whose earlier studies provided the foundation for the information on structure–function of the cytochrome b6f complex described in third report: M. T. Black, H. Böhme, R. M. Everly, P. N. Furbacher, M. E. Girvin, P. Horton, L. I. Krishtalik, M. Ponomarev, G. S. Tae, J. Whitmarsh, and W. R. Widger. I thank Ms. G. Sincich for contributions to the illustrations, and express my gratitude to the NIH General Medical Sciences-038323, the Dept. of Energy, DOE (DE-SC0018238), and the Henry Koffler professorship, which have funded most of the research described here, and to the John Simon Guggenheim and Alexander von Humboldt Foundations for Fellowship support.


  1. Agarwal R, Hasan SS, Jones LM, Stofleth JT, Ryan CM, Whitelegge JP, Kehoe DM, Cramer WA (2015) Role of domain swapping in the hetero-oligomeric cytochrome b 6 f lipo- protein complex. Biochemistry 54:3151–3163CrossRefGoogle Scholar
  2. Allen JF, Bennett J, Steinback KE, Arntzen CJ (1981) Chloroplast protein phosphorylation couples plastoquinone redox state to distribution of excitation energy between photosystems. Nature 291:25–29CrossRefGoogle Scholar
  3. Baniulis D, Yamashita E, Whitelegge JP, Zatsman AI, Hendrich MP, Hasan SS, Ryan CM, Cramer WA (2009) Structure-function, stability, and chemical modification of the cyanobacterial cytochrome b 6 f complex from nostoc sp. PCC 7120. J Biol Chem 284:9861–9869CrossRefGoogle Scholar
  4. Baniulis D, Zhang H, Yamashita E, Zakharova T, Hasan SS, Cramer WA (2011) Purification and crystallization of the cyanobacterial cytochrome b6f complex. In: Carpentier R (ed) Methods in molecular biology, photosynthesis research protocols. Humana Press Inc, Totowa, pp 65–77CrossRefGoogle Scholar
  5. Baniulis D, Hasan SS, Stofleth JT, Cramer WA (2013) Mechanism of enhanced superoxide production in the cytochrome b6f complex of oxygenic photosynthesis. Biochemistry-US 52:8975–8983CrossRefGoogle Scholar
  6. Barber J (1982) Influence of surface charge on thylakoid structure and function. Ann Rev Plant Physiol 33:261–295CrossRefGoogle Scholar
  7. Barrera NP, Zhou M, Robinson CV (2013) The role of lipids in defining membrane protein interactions: insights from mass spectrometry. Trends Cell Biol 23:1–8CrossRefGoogle Scholar
  8. Baymann F, Giusti F, Picot D, Nitschke W (2007) The ci/bH moiety in the b 6 f complex studied by EPR: a pair of strongly interacting hemes. Proc Nat Acad Sci USA 104:519–524CrossRefGoogle Scholar
  9. Bendall DS (1982) Photosynthetic cytochromes of oxygenic organisms. Biochim Biophys Acta 683:119–151CrossRefGoogle Scholar
  10. Bhaduri S, Stadnytski V, Zakharov SD, Hasan SS, Bujonowicz L, Sarewicz M, Savikhin S, Osyczka A, Cramer WA (2016) Pathways of transmembrane electron transfer on cytochrome bc complexes: Dielectric heterogeneity and interheme coulombic interaxctions. J Phys Chem B: 121:975–983CrossRefGoogle Scholar
  11. Blackwell MF, Whitmarsh J (1990) Effect of integral membrane proteins on the lateral mobility of plastoquinone in phosphatidylcholine proteoliposomes. Biophys J 58:1259–1271CrossRefGoogle Scholar
  12. Boardman NK, Anderson JM (1967) Fractionation of the photochemical systems of photosynthesis. II. Cytochrome and carotenoid contents of particles isolated from spinach chloroplasts. Biochim Biophys Acta 143:187–203CrossRefGoogle Scholar
  13. Carrell CJ, Zhang H, Cramer WA, Smith JL (1997) Biological identity and diversity in photosynthesis and respiration: structure of the lumen-side domain of the chloroplast Rieske protein. Structure 5:1613–1625CrossRefGoogle Scholar
  14. Carrell CJ, Schlarb BG, Bendall DS, Howe CJ, Cramer WA, Smith JL (1999) Structure of the soluble domain of cytochrome f from the cyanobacterium, Phormidium laminosum. Biochemistry 38:9590–9599CrossRefGoogle Scholar
  15. Chazotte B, Hackenbrock CR (1989) Lateral diffusion as a rate limiting step in ubiquinone-mediated mitochondrial electron transport. J Biol Chem 264:4978–4985Google Scholar
  16. Cramer WA, Hasan SS (2016) Structure-function of the cytochrome b6f lipoprotein complex. Cytochrome complexes: evolution, structures, energy transduction, and signaling. In: Cramer WA, Kallas T (eds) Advances in photosynthesis and respiration, vol 41. Springer, Dordrecht, pp 177–207Google Scholar
  17. Cramer WA, Martinez SE, Huang D, Tae G-S, Everly RM, Heymann JB, Cheng RH, Baker TS, Smith JL (1994) Structural aspects of the cytochrome b 6 f complex: structure of the lumen-side domain of cytochrome f. J Bioenerg Biomemb 26:31–47CrossRefGoogle Scholar
  18. Cramer WA, Baniulis D, Yamashita E, Zhang H, Zatsman AI, Hendrich MP (2008) Structure, spectroscopy, and function of the cytochrome b 6 f complex: heme c n and n-side electron and proton transfer reactions. In: Fromme P (ed) Photosynthetic protein complexes: a structural approach. Wiley-VCH, Weinheim, pp 155–179CrossRefGoogle Scholar
  19. Crofts AR (2004) The cytochrome bc 1 complex: function in the context of structure. Ann Rev Physiol 66:689–733CrossRefGoogle Scholar
  20. Crofts AR, Holland JT, Victoria D, Kolling DR, Dikanov SA, Gilbreth R, Lhee S, Kuras R, Kuras MG (2008) The Q-cycle reviewed: How well does a monomeric mechanism of the bc 1 complex account for the function of a dimeric complex?. Biochim Biophy Acta 1777:1001–1019CrossRefGoogle Scholar
  21. Dashdorj N, Zhang H, Kim H, Yan J, Cramer WA, Savikhin S (2005) The single chlorophyll a molecule in the cytochrome b 6 f complex: unusual optical properties protect the complex against singlet oxygen. Biophys. J. 88:4178–4187CrossRefGoogle Scholar
  22. Deisenhofer J, Michel H (1989) Nobel lecture. The photosynthetic reaction centre from the purple bacterium Rhodopseudomonas viridis. EMBO J. 8:2149–2170CrossRefGoogle Scholar
  23. Dibrova DV, Cherepanov DA, Galperin MY, Skulachev VP, Mulkidjanian AY (2013) Evolution of cytochrome bc complexes: from membrane-anchored dehydrogenases of ancient bacteria to triggers of apoptosis in vertebrates. Biochim Biophys Acta 1827:1407–1427CrossRefGoogle Scholar
  24. Dumas L, Zito F, Clangy S, Auroy P, Johnson X, Peltier G, Alric J (2017) A stromal region of cytochrome b6f subunit IV is involved in the activation of the Stt7 kinase in Chlamydomonas. Proc Natl Acad Sci USA 114:12063–12068CrossRefGoogle Scholar
  25. Duysens LNM (1955) Role of cytochrome and pyridine nucleotide in algal photosynthesis. Science (New York NY) 121:210–211CrossRefGoogle Scholar
  26. Esser L, Zhou F, Yu C-A, Xia D (2015) Cytochrome complexes: evolution, structures, energy transduction, and signaling. In: Cramer WA, Kallas T (eds) Cytochrome complexes: evolution, structures, energy transduction, and signaling. Springer SBM NL, Dordrecht. ppGoogle Scholar
  27. Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science (New York NY) 303:1831–1838CrossRefGoogle Scholar
  28. Furbacher PN, Girvin ME, Cramer WA (1989) On the question of interheme electron transfer in the chloroplast cytochrome b in situ. Biochemistry 28(6):8990–8998CrossRefGoogle Scholar
  29. Hasan SS, Cramer WA (2012) On rate limitations of electron transfer in the photosynthetic cytochrome b6f complex. Phys Chem Chem Phys 14:13853–13860CrossRefGoogle Scholar
  30. Hasan SS, Cramer WA (2014) Internal lipid architecture of the hetero-oligomeric cytochrome b6f complex. Structure 22:1008–1015CrossRefGoogle Scholar
  31. Hasan SS, Yamashita E, Ryan CM, Whitelegge JP, Cramer WA (2011) Conservation of lipid functions in cytochrome bc complexes. J Mol Biol 414:145–162CrossRefGoogle Scholar
  32. Hasan SS, Yamashita E, Baniulis D, Cramer WA (2013a) Quinone-dependent proton transfer pathways in the photosynthetic cytochrome b6f complex. Proc Natl Acad Sci USA 110:4297–4302CrossRefGoogle Scholar
  33. Hasan SS, Yamashita E, Cramer WA (2013b) Trans-membrane signaling and assembly of the cytochrome b6-lipidic charge transfer complex. Biochim Biophys Acta 1827:1295–1308CrossRefGoogle Scholar
  34. Hasan SS, Zakharov SD, Chauvet A, Stadnytskyi V, Savikhin S, Cramer WA (2014a) A map of dielectric heterogeneity in a membrane protein: the hetero-oligomeric cytochrome b6f complex. J Phys Chem B 118:6614–6625CrossRefGoogle Scholar
  35. Hasan SS, Proctor EA, Yamashita E, Dokholyan NV, Cramer WA (2014b) Traffic within the cytochrome b6f lipoprotein complex: gating of the quinone portal. Biophys. J. 107:1620–1628CrossRefGoogle Scholar
  36. Heimann S, Ponamarev MV, Cramer WA (2000) Movement of the Rieske iron-sulfur protein in the p-side bulk aqueous phase: effect of lumenal viscosity on redox reactions of the cytochrome b 6 f complex. Biochemistry 39:2622–2629CrossRefGoogle Scholar
  37. Huang D, Everly RM, Cheng RH, Heymann JB, Schägger H, Sled V, Ohnishi T, Baker TS, Cramer WA (1994) Characterization of the chloroplast cytochrome b 6 f complex as a structural and functional dimer. Biochemistry-Us 33:4401–4409CrossRefGoogle Scholar
  38. Iwai M, Takizawa K, Tokutsu R, Okamuro A, Takahashi Y, MInagawa J (2010) Isolation of the supercomplex that drives cyclic electron flow in photosynthesis. Nature 464:1210–1213CrossRefGoogle Scholar
  39. Jagendorf AT, Uribe E (1966) ATP formation caused by acid-base transition of spinach chloroplasts. Proc Natl Acad Sci USA 55:170–177CrossRefGoogle Scholar
  40. Johnson MP, Vasilev C, Olsen JD, Hunter CN (2014) Nanodomains of cytochrome b6f and photosystem II complexes in spinach grana thylakoid membranes. Plant Cell 26:3051–3061CrossRefGoogle Scholar
  41. Joliot P, Johnson GN (2011) Regulation of cyclic and linear electron flow in higher plants. Proc Natl Acad Sci USA 108:13317–13322CrossRefGoogle Scholar
  42. Joliot P, Joliot A (1988) The low potential elecron transfer chain in the cytochrome bf complex. Biochim Biophys Acta 933:319–333CrossRefGoogle Scholar
  43. Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 A resolution. Nature 411:909–917CrossRefGoogle Scholar
  44. Kao WC, Hunte C (2014) The molecular evolution of the Qo motif. Genome Biol Evolut 6:1894–1910CrossRefGoogle Scholar
  45. Kim H, Dashdorj N, Zhang H, Yan J, Cramer WA, Savikhin S (2005) An anomalous distance dependence of intra-protein chlorophyll-carotenoid triplet energy transfer. Biophys Jo 89:28–30CrossRefGoogle Scholar
  46. Kuhlbrandt W (2015) Structure and function of mitochondrial membrane protein complexes. BMC Biol 13/89:1–11Google Scholar
  47. Kurisu G, Zhang H, Smith JL, Cramer WA (2003) Structure of the cytochrome b 6 f complex of oxygenic photosynthesis: tuning the cavity. Science (New York NY) 302:1009–1014CrossRefGoogle Scholar
  48. Lemeille S, Willig A, Depege-Fargeix N, Delessert C, Bassi R, Rochaix JD (2009) Analysis of the chloroplast protein kinase Stt7 during state transitions. PLoS Biol 7:664–675CrossRefGoogle Scholar
  49. Levine RP, Gorman DS, Avron M, Butler WL (1966) Light-induced absorbance changes in wild-type and mutant strains of Chlamydomonas reinhardtii. Brookhaven Symp Biol 19:143–148Google Scholar
  50. Martinez SE, Smith JL, Huang D, Szczepaniak A, Cramer WA (1992) Crystallographic studies of the lumen-side domain of turnip cytochrome f. In: Murata N (ed) Research in photosynthesis. Kluwer Academic Publishers, Dordrecht, pp 495–498Google Scholar
  51. Martinez SE, Huang D, Szczepaniak A, Cramer WA, Smith JL (1994) Crystal structure of the chloroplast cytochrome f reveals a novel cytochrome fold and unexpected heme ligation. Structure 2:95–105CrossRefGoogle Scholar
  52. Martinez S, Huang D, Ponamarev M, Cramer WA, Smith JL (1996) The heme redox center of chloroplast cytochrome f is linked to a buried five-water chain. Protein Sci 5:1081–1092CrossRefGoogle Scholar
  53. Millner PA, Widger WR, Abbott MS, Cramer WA, Dilley RA (1982) The effect of adenine nucleotides on inhibition of the thylakoid protein kinase by sulfhydryl-directed reagents. J Biol Chem 257:1736–1742Google Scholar
  54. Mitchell P (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev 41:445–502CrossRefGoogle Scholar
  55. Mitchell P (1975) The protonmotive Q cycle: a general formulation. FEBS Lett 59:137–139CrossRefGoogle Scholar
  56. Mulkidjanian A, Koonin E, Makarova K, Haselkorn R, Galperin M (2007) The cyanobacterial genome core and the origin of photosynthesis. Photosyn Res 91:269–269Google Scholar
  57. Nitschke W, van Lis R, Schoepp-Cothenet B, Baymann F (2010) The “green” phylogenetic clade of Rieske/cyt b complexes. Photosyn Res 104:347–355CrossRefGoogle Scholar
  58. Palmer G, Degli-Esposti M (1994) Application of exciton coupling theory to the structure of mitochondrial cytochrome b. Biochemistry-US 33:176–185CrossRefGoogle Scholar
  59. Palsdottir H, Hunte C (2004) Lipids in membrane protein structures. Biochim Biophys Acta 1666:2–18CrossRefGoogle Scholar
  60. Ponamarev MV, Cramer WA (1998) Perturbation of the internal water chain in cytochrome f of oxygenic photosynthesis: loss of the concerted reduction of cytochromes f and b6. Biochemistry-Us 37:17199–17208CrossRefGoogle Scholar
  61. Rieske JS, Hansen RE, Zaugg WS (1964) Studies on the electron transfer system. 58. Properties of a new oxidation-reduction component of the respiratory chain as studied by electron paramagnetic resonance spectroscopy. J Biol Chem 239:3022–3117Google Scholar
  62. Rochaix JD (2014) Regulation and dynamics of the light-harvesting system. Annu Rev Plant Biol 65:287–309CrossRefGoogle Scholar
  63. Sainz G, Carrell CJ, Ponamarev MV, Soriano GM, Cramer WA, Smith JL (2000) Interruption of the internal water chain of cytochrome f impairs photosynthetic function. Biochemistry-Us 39:9164–9173CrossRefGoogle Scholar
  64. Shapiguzov A, Chai X, Fucile G, Longoni P, Zhang L, Rochaix JD (2016) Activation of the Stt7/STN7 kinase through dynamic interactions with the cytochrome b6f complex. Plant Physiol 171:82–92CrossRefGoogle Scholar
  65. Singh SK, Hasan SS, Zakharov S, Naurin S, Cohn W, Ma J, Whitelegge JP, Cramer WA (2016) Trans-membrane signaling in photosynthetic state transitions: redox and sructure-dependent interaction in vitro between Stt7 kinase and the cytochrome b6f complex. J Biol Chem 291:21740–21750CrossRefGoogle Scholar
  66. Soriano GM, Ponamarev MV, Tae G-S, Cramer WA (1996) Effect of the interdomain region of cytochrome f on its redox reactions in vivo. Biochemistry-US 35:14590–14598CrossRefGoogle Scholar
  67. Soriano GM, Cramer WA, Krishtalik LI (1997) Electrostatic effects on electron-transfer kinetics in the cytochrome f-plastocyanin complex. Biophys J 73:3265–3276CrossRefGoogle Scholar
  68. Soriano GM, Ponamarev MV, Piskorowski RA, Cramer WA (1998) Identification of the basic residues of cytochrome f responsible for electrostatic interactions with plastocyanin in vitro: relevance to the electron transfer in vivo. Biochemistry-US 37:15120–15128CrossRefGoogle Scholar
  69. Stroebel D, Choquet Y, Popot J-L, Picot D (2003) An atypical heam in the cytochrome b 6 f complex. Nature 426:413–418CrossRefGoogle Scholar
  70. Taylor RM, Sallans L, Frankel LK, Bricker TM (2018) Natively oxidized amino acid residues in the spinach b 6 f complex. Photosyn Res 137:115–141CrossRefGoogle Scholar
  71. Twigg AI, Baniulis D, Cramer WA, Hendrich MP (2009) EPR detection of an O2 surrogate bound to heme cn of the cytochrome b 6 f complex. J Am Chem Soc 131:12536–12537CrossRefGoogle Scholar
  72. Valiyaveetil FI, Zhou Y, MacKinnon R (2002) Lipids in the structure, folding, and function of the KcsA K+ channel. Biochemistry-US 41:10771–10777CrossRefGoogle Scholar
  73. Van Eerden FJ, Melo MN, Frederix JM, Periole X, Marrink SJ (2017) Exchange pathways of plastoquinone and plastoquinol in the photosystem II complex. Nat Commun 8:15214CrossRefGoogle Scholar
  74. Vener AV, van Kan PJ, Rich PR, Ohad I, Andersson B (1997) Plastoquinol at the quinol oxidation site of reduced cytochrome bf mediates signal transduction between light and protein phosphorylation: thylakoid protein kinase deactivation by a single-turnover flash. Proc Natl Acad Sci USA 94:1585–1590CrossRefGoogle Scholar
  75. White SH (2018) Membrane Proteins of Known Structure.
  76. Whitelegge JP, Zhang H, Taylor R, Cramer WA (2002) Full subunit coverage liquid chromatography electrospray-ionization mass spectrometry (LCMS+) of an oligomeric membrane protein complex: the cytochrome b 6 f complex from spinach and the cyanobacterium, M. laminosus. Mol Cell Prot 1:816–827CrossRefGoogle Scholar
  77. Widger WR, Cramer WA, Herrmann RG, Trebst A (1984) Sequence homology and structural similarity between the b cytochrome of mitochondrial complex III and the chloroplast b 6 f complex: position of the cytochrome b hemes in the membrane. Proc Natl Acad Sci USA 81:674–678CrossRefGoogle Scholar
  78. Wilson CA, Crofts AR (2018) Dissecting the pattern of proton release from partial process involved in ubihydroquinone oxidation in the Q-cycle. Biochim Biophys Acta 1859:531–543CrossRefGoogle Scholar
  79. Yamashita E, Zhang H, Cramer WA (2007) Structure of the cytochrome b 6 f complex: quinone analogue inhibitors as ligands of heme c n. J Mol Biol 370:39–52CrossRefGoogle Scholar
  80. Yan J, Dashdorj N, Baniulis D, Yamashita E, Savikhin S, Cramer WA (2008) On the structural role of the aromatic residue environment of the chlorophyll a in the cytochrome b6f complex. Biochemistry-US 47:3654–3661CrossRefGoogle Scholar
  81. Zatsman AI, Zhang H, Gunderson WA, Cramer WA, Hendrich MP (2006) Heme-heme interactions in the cytochrome b 6 f complex: EPR spectroscopy and correlation with structure. J Am Chem Soc 128:14246–14247CrossRefGoogle Scholar
  82. Zhang H, Cramer WA (2005) Problems in obtaining diffraction-quality crystals of hetero-oligomeric integral membrane proteins. J Struct Funct Genom 6:219–223CrossRefGoogle Scholar
  83. Zhang H, Carrell CJ, Huang D, Sled V, Ohnishi T, Smith JL, Cramer WA (1996) Characterization and crystallization of the lumen-side domain of the chloroplast rieske iron-sulfur protein. J Biol Chem 271:31360–31366CrossRefGoogle Scholar
  84. Zhang H, Huang D, Cramer WA (1999) Stoichiometrically bound beta-carotene in the cytochrome b 6 f complex of oxygenic photosynthesis protects against oxygen damage. J Biol Chem 274:1581–1587CrossRefGoogle Scholar
  85. Zhang H, Whitelegge JP, Cramer WA (2001) Ferredoxin:NADP+ oxidoreductase is a subunit of the chloroplast cytochrome b 6 f complex. J Biol Chem 276:38159–38165Google Scholar
  86. Zhang H, Kurisu G, Smith JL, Cramer WA (2003) A defined protein-detergent-lipid complex for crystallization of integral membrane proteins: The cytochrome b 6 f complex of oxygenic photosynthesis. Proc Natl Acad Sci USA 100:5160–5163CrossRefGoogle Scholar
  87. Zouni A, Witt H, Kern J, Fromme P, Krauss N, Saenger W, Orth P (2001) Crystal structure of photosystem II from Synechococcus elongatus at 3.8 A resolution. Nature 409:739–743CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Biological SciencesPurdue UniversityWest LafayetteUSA

Personalised recommendations