Skip to main content
Log in

Structure and function of photosystem I in Cyanidioschyzon merolae

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The evolution of photosynthesis from primitive photosynthetic bacteria to higher plants has been driven by the need to adapt to a wide range of environmental conditions. The red alga Cyanidioschyzon merolae is a primitive organism, which is capable of performing photosynthesis in extreme acidic and hot environments. The study of its photosynthetic machinery may provide new insight on the evolutionary path of photosynthesis and on light harvesting and its regulation in eukaryotes. With that aim, the structural and functional properties of the PSI complex were investigated by biochemical characterization, mass spectrometry, and X-ray crystallography. PSI was purified from cells grown at 25 and 42 °C, crystallized and its crystal structure was solved at 4 Å resolution. The structure of C. merolae reveals a core complex with a crescent-shaped structure, formed by antenna proteins. In addition, the structural model shows the position of PsaO and PsaM. PsaG and PsaH are present in plant complex and are missing from the C. merolae model as expected. This paper sheds new light onto the evolution of photosynthesis, which gives a strong indication for the chimerical properties of red algae PSI. The subunit composition of the PSI core from C. merolae and its associated light-harvesting antennae suggests that it is an evolutionary and functional intermediate between cyanobacteria and plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

PSI:

Photosystem I

PSII:

Photosystem II

LHC:

Light-harvesting complex

References

  • Adams PD et al (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D 66:213–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ago H, Adachi H, Umena Y et al (2016) Novel features of eukaryotic photosystem II revealed by its crystal structure analysis from a red alga. J Biol Chem 291:5676–5687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alboresi A, Le Quiniou C, Yadav SK, Scholz M, Meneghesso A, Gerotto C, Simionato D, Hippler M, Boekema EJ, Croce R, Morosinotto T (2017) Conservation of core complex subunits shaped the structure and function of photosystem I in the secondary endosymbiont alga Nannochloropsis gaditana. New Phytol 213, 714–726

    Article  CAS  PubMed  Google Scholar 

  • Allen MB (1959) Studies with Cyanidium caldarium, an anomalously pigmented chlorophyte. Arch Mikrobiol 32:270–277

    Article  CAS  PubMed  Google Scholar 

  • Amunts A, Drory O, Nelson N (2007) The structure of a plant photosystem I supercomplex at 3.4 A resolution. Nature 447:58–63

    Article  CAS  PubMed  Google Scholar 

  • Amunts A, Toporik H, Borovikova A, Nelson N (2010) Structure determination and improved model of plant photosystem I. J Biol Chem 285:3478–3486

    Article  CAS  PubMed  Google Scholar 

  • Barber J (2004) Engine of life and big bang of evolution: a personal perspective. Photosynth Res 80:137–155

    Article  CAS  PubMed  Google Scholar 

  • Bengis C, Nelson N (1977) Subunit structure of chloroplast photosystem I reaction center. J Biol Chem 252:4564–4569

    CAS  PubMed  Google Scholar 

  • Ben-Shem A, Frolow F, Nelson N (2003) Crystal structure of plant photosystem I. Nature 426:630–635

    Article  CAS  PubMed  Google Scholar 

  • Ben-Shem A, Frolow F, Nelson N (2004) Evolution of photosystem I—from symmetry through pseudosymmetry to asymmetry. FEBS Lett 564:274–280

    Article  CAS  PubMed  Google Scholar 

  • Busch A, Hippler M (2011) The structure and function of eukaryotic photosystem I. Biochim Biophys Acta 1807:864–877

    Article  CAS  PubMed  Google Scholar 

  • Busch A, Nield J, Hippler M (2010) The composition and structure of photosystem I-associated antenna from Cyanidioschyzon merolae. Plant J 62:886–897

    Article  CAS  PubMed  Google Scholar 

  • Chan CX, Bhattacharya D (2013) Analysis of horizontal genetic transfer in red algae in the post-genomics age. Mob Genet Elem 3:e27669

    Article  Google Scholar 

  • Chitnis PR, Purvis D, Nelson N (1991) Molecular cloning and targeted mutagenesis of the gene psaF encoding subunit III of photosystem I from the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 266:20146–20151

    CAS  PubMed  Google Scholar 

  • Croce R, van Amerongen H (2013) Light-harvesting in photosystem I. Photosynth Res 116:153–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeLano WL (2002) Pymol: an open-source molecular graphics tool. Scientific, San Carlos

    Google Scholar 

  • Drop B, Webber-Birungi M, Fusetti F, Kouril R, Redding KE, Boekema EJ, Croce R (2011) Photosystem I of Chlamydomonas reinhardtii contains nine light-harvesting complexes (Lhca) located on one side of the core. J Biol Chem 286:44878–44887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drop B, Yadav KNS, Boekema EJ, Croce R (2014) Consequences of state transitions on the structural and functional organization of photosystem I in the green alga Chlamydomonas reinhardtii. Plant J 78:181–191

    Article  CAS  PubMed  Google Scholar 

  • Elrad D, Grossman AR (2004) A genome’s-eye view of the light-harvesting polypeptides of Chlamydomonas reinhardtii. Curr Genet 45:61–75

    Article  CAS  PubMed  Google Scholar 

  • Emsley P, Cowtan K, Coot (2004) Model-building tools for molecular graphics. Acta Crystallogr Sect D 60:2126–2132

    Article  CAS  Google Scholar 

  • Germano M, Yakushevska AE, Keegstra W, van Gorkom HJ, Dekker JP, Boekema EJ (2002) Supramolecular organization of photosystem I and light-harvesting complex I in Chlamydomonas reinhardtii. FEBS Lett 525:121–125

    Article  CAS  PubMed  Google Scholar 

  • Haniewicz P, Abram M, Nosek L, Kirkpatrick J, El-Mohsnawy E, Janna Olmos JD, Kouril R, Kargul JM. (2017) Molecular mechanisms of photoadaptation of photosystem I supercomplex of in an evolutionary cyanobacterial/algal intermediate. Plant Physiol 01022

  • Hippler M, Reichert J, Sutter M et al (1996) The plastocyanin binding domain of photosystem I. EMBO J 15:6374–6384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hippler M, Drepper F, Rochaix JD, Mühlenhoff U (1999) Insertion of the N-terminal part of PsaF from Chlamydomonas reinhardtii into photosystem I from Synechococcus elongatus enables efficient binding of algal plastocyanin and cytochrome c6. J Biol Chem 274:4180–4188

    Article  CAS  PubMed  Google Scholar 

  • Jensen PE et al (2007) Structure, function and regulation of plant photosystem I. Biochim Biophys Acta 1767:335–352

    Article  CAS  PubMed  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 A resolution. Nature 411:909–917

    Article  CAS  PubMed  Google Scholar 

  • Kabsch W (2010) Xds. Acta Crystallogr Sect D 66:125–132

    Article  CAS  Google Scholar 

  • Kargul J, Nield J, Barber J (2003) Three-dimensional reconstruction of a light-harvesting complex I-photosystem I (LHCI-PSI) supercomplex from the green alga Chlamydomonas reinhardtii – insights into light harvesting for PSI. J Biol Chem 278:16135–16141

    Article  CAS  PubMed  Google Scholar 

  • Kargul J, Janna Olmos JD, Krupnik T (2012) Structure and function of photosystem I and its application in biomimetic solar-to-fuel systems. J Plant Physiol 169:1639–1653

    Article  CAS  PubMed  Google Scholar 

  • Keeling PJ (2004) Diversity and evolutionary history of plastids and their hosts. Am J Bot 91:1481–1493

    Article  PubMed  Google Scholar 

  • Keeling PJ, Palmer JD (2008) Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet 9:605–618

    Article  CAS  PubMed  Google Scholar 

  • Kim E, Graham LE (2008) EEF2 analysis challenges the monophyly of archaeplastida and chromalveolata. PLoS ONE 3(7):e2621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liguori N, Roy LM, Opacic M, Durand G, Croce R (2013) Regulation of light harvesting in the green alga Chlamydomonas reinhardtii: the C-terminus of LHCSR is the knob of a dimmer switch. J Am Chem Soc 135:18339–18342

    Article  CAS  PubMed  Google Scholar 

  • Malavath T, Caspy I, Netzer-El SY et al (2018) Structure and function of wild-type and subunit-depleted photosystem I in Synechocystis. Biochim Biophys Acta 0–1

  • Matsuzaki M et al (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428:653–657

    Article  CAS  PubMed  Google Scholar 

  • Mazor Y, Nataf D, Toporik H, Nelson N (2014) Crystal structures of virus-like photosystem I complexes from the mesophilic cyanobacterium Synechocystis PCC 6803. Elife 3:e01496

    Article  PubMed Central  Google Scholar 

  • Mazor Y, Borovikova A, Nelson N (2015) The structure of plant photosystem i super-complex at 2.8 Å resolution. Elife 4:1–18

    Article  CAS  Google Scholar 

  • Mazor Y, Borovikova A, Caspy I, Nelson N (2017a) Structure of the plant photosystem i supercomplex at 2.6 Å resolution. Nat Plants 3:1–9

    Article  CAS  Google Scholar 

  • Mazor Y, Borovikova A, Caspy I, Nelson N (2017b) Structure of the plant photosystem I supercomplex at 2.6Å resolution. Nat Plants 3:17014

    Article  CAS  PubMed  Google Scholar 

  • Merchant SS, Prochnik SE, Vallon O et al (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michel H, Ostermeier C Crystallization of membrane proteins. Biophys Methods 697–700 (1997)

  • Minoda A, Sakagami R, Yagisawa F, Kuroiwa T, Tanaka K (2004) Improvement of culture conditions and evidence for nuclear transformation by homologous recombination in a red alga, Cyanidioschyzon merolae 10D. Plant Cell Physiol 45:667–671

    Article  CAS  PubMed  Google Scholar 

  • Moreira D, Guyader HL, Phillippe H (2000) The origin of red algae and the evolution of chloroplasts. Nature 405:69–72

    Article  CAS  PubMed  Google Scholar 

  • Naithani S, Hou JM, Chitnis PR (2000) Targeted inactivation of the psaK1, psaK2 and psaM genes encoding subunits of photosystem I in the cyanobacterium Synechocystis sp. PCC 6803. Photosynth Res 63:225–236

    Article  CAS  PubMed  Google Scholar 

  • Nechushtai R, Nelson N (1981) Purification properties and biogenesis of Chlamydomonas reinhardii photosystem I reaction center. J Biol Chem 256:11624–11628

    CAS  PubMed  Google Scholar 

  • Nelson N (2011) Photosystems and global effects of oxygenic photosynthesis. Biochim Biophys Acta 1807:856–863

    Article  CAS  PubMed  Google Scholar 

  • Nelson N, Ben-Shem A (2004) The complex architecture of oxygenic photosynthesis. Nat Rev Mol Cell Biol 5:971–982

    Article  PubMed  Google Scholar 

  • Nelson N, Junge W (2015) Structure and energy transfer in photosystems of oxygenic photosynthesis. Annu Rev Biochem 84:659–683

    Article  CAS  PubMed  Google Scholar 

  • Nikolova D, Weber D, Scholz M, Bald T, Scharsack JP, Hippler M (2017) Temperature-induced remodeling of the photosynthetic machinery tunes photosynthesis in the thermophilic alga Cyanidioschyzon merolae. Plant Physiol 174:35–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nozaki H, Matsuzaki M, Takahara M et al (2003) The phylogenetic position of red algae revealed by multiple nuclear genes from mitochondria-containing eukaryotes and an alternative hypothesis on the origin of plastids. J Mol Evol 56:485–497

    Article  CAS  PubMed  Google Scholar 

  • Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276:307–326

    Article  CAS  PubMed  Google Scholar 

  • Qin X, Suga M, Kuang T, Shen JR (2015) Structural basis for energy transfer pathways in the plant PSI-LHCI supercomplex. Science 348:989–995

    Article  CAS  PubMed  Google Scholar 

  • Reeb V, Bhattacharya D (2010) The thermo-acidophilic Cyanidiophyceae (Cyanidiales). In: Seckbach J, Chapman DJ (eds) Red algae in the genomic age. Springer Netherlands, Dordrecht, pp 409–426

    Chapter  Google Scholar 

  • Sharon I, Alperovitch A, Rohwer F, Haynes M, Glaser F, Atamaa-Ismaeel N, Pinter RY, Partensky F, Koonin EV, Wolf YI, Nelson N, Oded Béjà O (2009) Photosystem I gene cassettes are present in marine virus genomes. Nature 461:258–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sommer F, Drepper F, Haehnell W, Hippler M (2004) The hydrophobic recognition site formed by residues PsaA-Trp651 and PsaB-Trp627 of photosystem I in Chlamydomonas reinhardtii confers distinct selectivity for binding of plastocyanin and cytochrome c6. J Biol Chem 279:20009–20017

    Article  CAS  PubMed  Google Scholar 

  • Stauber EJ, Busch A, Naumann B, Svatos A, Hippler M (2009) Proteotypic profiling of LHCI from Chlamydomonas reinhardtii provides new insights into structure and function of the complex. Proteomics 9:398–408

    Article  CAS  PubMed  Google Scholar 

  • Strong M, Sawaya MR, Wang S et al (2006) Toward the structural genomics of complexes: crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis. Proc Natl Acad Sci USA 103:8060–8065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan S, Ducret a, Aebersold R, Gantt E (1997) Red algal LHC I genes have similarities with both Chl a/b- and a/c-binding proteins: a 21 kDa polypeptide encoded by LhcaR2 is one of the six LHC I polypeptides. Photosynth Res 53:129–140

    Article  CAS  Google Scholar 

  • Thangaraj B, Jolley CC, Sarrou I et al (2011) Efficient light harvesting in a dark, hot, acidic environment: the structure and function of PSI-LHCI from Galdieria sulphuraria. Biophys J 100:135–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian L, Liu Z, Wang F, Shen L, Chen J, Chang L, Zhao S, Han G, Wang W, Kuang T, Qin X, Shen JR (2017) Isolation and characterization of PSI-LHCI super-complex and their sub-complexes from a red alga Cyanidioschyzon merolae. Photosynth Res 133:201–214

    Article  CAS  PubMed  Google Scholar 

  • Umena Y, Kawakami K, Shen J-R, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 A ̊. Nature 473:55–60

    Article  CAS  PubMed  Google Scholar 

  • Vagin AA et al (2004) REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr Sect D 60:2184–2195

    Article  CAS  Google Scholar 

  • Vaguine AA, Richelle J, Wodak SJ (1999) SFCHECK: a unified set of procedures for evaluating the quality of macromolecular structure-factor data and their agreement with the atomic model. Acta Crystallogr Sect D 55:191–205

    Article  CAS  Google Scholar 

  • Vanselow C, Weber APM, Krause K, Fromme P (2009) Genetic analysis of the photosystem I subunits from the red alga, Galdieria sulphuraria. Biochim Biophys Acta 1787:46

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Kurisu G, Smith JL, Cramer WA (2003) A defined protein-detergent-lipid complex for crystallization of integral membrane proteins: the cytochrome b6f complex of oxygenic photosynthesis. Proc Natl Acad Sci USA 100, 5160–5163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the ESRF, SLS, and BESSYII synchrotrons for beam time and the staff scientists for excellent guidance and assistance. This work was supported by a grant (No. 293579 – HOPSEP) from the European Research Council, by The Israel Science Foundation (Grant No. 569/17), and by the I-CORE Program of the Planning and Budgeting Committee and The Israel Science Foundation (Grant No. 1775/12). M.H acknowledges funding by the German Science Foundation (DFG HI 739/13.1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan Nelson.

Additional information

Maya Antoshvili and Ido Caspy equally contributed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antoshvili, M., Caspy, I., Hippler, M. et al. Structure and function of photosystem I in Cyanidioschyzon merolae. Photosynth Res 139, 499–508 (2019). https://doi.org/10.1007/s11120-018-0501-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-018-0501-4

Keywords

Navigation