Photoinhibition of photosystem I in Nephrolepis falciformis depends on reactive oxygen species generated in the chloroplast stroma

Abstract

We studied how high light causes photoinhibition of photosystem I (PSI) in the shade-demanding fern Nephrolepis falciformis, in an attempt to understand the mechanism of PSI photoinhibition under natural field conditions. Intact leaves were treated with constant high light and fluctuating light. Detached leaves were treated with constant high light in the presence and absence of methyl viologen (MV). Chlorophyll fluorescence and P700 signal were determined to estimate photoinhibition. PSI was highly oxidized under high light before treatments. N. falciformis showed significantly stronger photoinhibition of PSI and PSII under constant high light than fluctuating light. These results suggest that high levels of P700 oxidation ratio cannot prevent PSI photoinhibition under high light in N. falciformis. Furthermore, photoinhibition of PSI in N. falciformis was largely accelerated in the presence of MV that promotes the production of superoxide anion radicals in the chloroplast stroma by accepting electrons from PSI. From these results, we propose that photoinhibition of PSI in N. falciformis is mainly caused by superoxide radicals generated in the chloroplast stroma, which is different from the mechanism of PSI photoinhibition in Arabidopsis thaliana and spinach. Here, we provide some new insights into the PSI photoinhibition under natural field conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

F v/F m :

The maximum quantum yield of PSII

MV:

Methyl viologen

P m :

The maximum photo-oxidizable P700

PSI:

Photosystem I

PSII:

Photosystem II

ROS:

Reactive oxygen species

Y(I):

The quantum yield of photosystem I (PSI)

Y(ND):

The quantum yield of non-photochemical energy dissipation in PSI owing to a shortage of electron donors

Y(NA):

The quantum yield of non-photochemical energy dissipation in PSI owing to a shortage of electron acceptors

Y(II):

The effective quantum yield of photosystem II (PSII)

Y(NPQ):

The quantum yield of regulated energy dissipation in PSII

Y(NO):

The quantum yield of non-regulated energy dissipation in PSII

ETRI:

Photosynthetic electron flow through PSI

ETRII:

Photosynthetic electron flow through PSII

References

  1. Allahverdiyeva Y, Mamedov F, Mäenpää P, Vass I, Aro EM (2005) Modulation of photosynthetic electron transport in the absence of terminal electron acceptors: characterization of the rbcL deletion mutant of tobacco. Biochim Biophys Acta 1709:69–83

    Article  PubMed  CAS  Google Scholar 

  2. Allakhverdiev SI (2011) Recent progress in the studies of structure and function of photosystem II. J Photochem Photobiol B 104:1–8

    Article  PubMed  CAS  Google Scholar 

  3. Allakhverdiev SI, Murata N (2004) Environmental stress inhibits the synthesis de novo of proteins involved in the photodamage-repair cycle of photosystem II in Synechocystis sp. PCC 6803. Biochim Biophys Acta 1657:23–32

    Article  PubMed  CAS  Google Scholar 

  4. Allakhverdiev SI, Los DA, Mohanty P, Nishiyama Y, Murata N (2007) Glycinebetaine alleviates the inhibitory effect of moderate heat stress on the repair of photosystem II during photoinhibition. Biochim Biophys Acta 1767:1363–1371

    Article  PubMed  CAS  Google Scholar 

  5. Asada K, Takahashi M (1987) Production and scavenging of active oxygen in photosynthesis. In: Kyle DJ, Osmond CB, Arntzen CJ (eds) Photoinhibition. Elsevier Science, Amsterdam, pp 227–287

    Google Scholar 

  6. Babbs CF, Pham JA, Coolbaugh RC (1989) Lethal hydroxyl radical production in paraquat-treated plants. Plant Physiol 90:1267–1270

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Barth C, Krause GH (2002) Study of tobacco transformants to assess the role of chloroplastic NAD (P) H dehydrogenase in photoprotection of photosystems I and II. Planta 216:273–279

    Article  PubMed  CAS  Google Scholar 

  8. Barth C, Krause GH, Winter K (2001) Responses of photosystem I compared with photosystem II to highlight stress in tropical shade and sun leaves. Plant Cell Environ 24:163–176

    Article  CAS  Google Scholar 

  9. Bondarava N, Gross CM, Mubarakshina M, Golecki JR, Johnson GN, Krieger-Liszkay A (2010) Putative function of cytochrome b559 as a plastoquinol oxidase. Physiol Plant 138:463–473

    Article  PubMed  CAS  Google Scholar 

  10. Brestic M, Zivcak M, Kunderlikova K, Sytar O, Shao H, Kalaji HM, Allakhverdiev SI (2015) Low PSI content limits the photoprotection of PSI and PSII in early growth stages of chlorophyll b-deficient wheat mutant lines. Photosynth Res 125:151–166

    Article  PubMed  CAS  Google Scholar 

  11. Brestic M, Zivcak M, Kunderlikova K, Allakhverdiev SI (2016) High temperature specifically affects the photoprotective responses of chlorophyll b-deficient wheat mutant lines. Photosynth Res 130:251–266

    Article  PubMed  CAS  Google Scholar 

  12. Fan DY, Jia H, Barber J, Chow WS (2009) Novel effects of methyl viologen on photosystem II function in spinach leaves. Eur Biophys J 39:191–199

    Article  PubMed  CAS  Google Scholar 

  13. Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 99:87–92

    Article  Google Scholar 

  14. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  PubMed  CAS  Google Scholar 

  15. Grieco M, Tikkanen M, Paakkarinen V, Kangasjärvi S, Aro EM (2012) Steady-state phosphorylation of light-harvesting complex II proteins preserves photosystem I under fluctuating white light. Plant Physiol 160:1896–1910

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Havaux M, Davaud A (1994) Photoinhibition of photosynthesis in chilled potato leaves is not correlated with a loss of photosystem II activity – preferential inactivation of photosystem I. Photosynth Res 40:75–92

    Article  PubMed  CAS  Google Scholar 

  17. Hendrickson L, Furbank RT, Chow WS (2004) A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence. Photosynth Res 82:73–81

    Article  PubMed  CAS  Google Scholar 

  18. Hideg É, Kós PB, Vass I (2007) Photosystem II damage induced by chemically generated singlet oxygen in tobacco leaves. Physiol Plant 131:33–40

    Article  PubMed  CAS  Google Scholar 

  19. Huang W, Zhang SB, Cao KF (2010) Stimulation of cyclic electron flow during recovery after chilling-induced photoinhibition of PSII. Plant Cell Physiol 51:1922 – 1928

    Article  PubMed  CAS  Google Scholar 

  20. Huang W, Zhang SB, Cao KF (2011) Cyclic electron flow plays an important role in photoprotection of tropical trees illuminated at temporal chilling temperature. Plant Cell Physiol 52:297–305

    Article  PubMed  CAS  Google Scholar 

  21. Huang W, Yang SJ, Zhang SB, Zhang JL, Cao KF (2012) Cyclic electron flow plays an important role in photoprotection for the resurrection plant Paraboea rufescens under drought stress. Planta 235:819–828

    Article  PubMed  CAS  Google Scholar 

  22. Huang W, Fu PL, Jiang YJ, Zhang JL, Zhang SB, Hu H, Cao KF (2013) Differences in the responses of photosystem I and photosystem II of three tree species Cleistanthus sumatranus, Celtis philippensis and Pistacia weinmannifolia submitted to a prolonged drought in a tropical limestone forest. Tree Physiol 33:211–220

    Article  PubMed  CAS  Google Scholar 

  23. Huang W, Zhang SB, Zhang JL, Hu H (2015) Photoinhibition of photosystem I under high light in the shade-established tropical tree species Psychotria rubra. Front Plant Sci 6:801

    PubMed  PubMed Central  Google Scholar 

  24. Huang W, Yang YJ, Zhang JL, Hu H, Zhang SB (2016a) PSI photoinhibition is more related to electron transfer from PSII to PSI rather than PSI redox state in Psychotria rubra. Photosynth Res 129:85–92

    Article  PubMed  CAS  Google Scholar 

  25. Huang W, Yang YJ, Hu H, Zhang SB (2016b) Responses of photosystem I compared with photosystem II to fluctuating light in the shade-establishing tropical tree species Psychotria henryi. Front Plant Sci 7:1549

    PubMed  PubMed Central  Google Scholar 

  26. Huang W, Yang YJ, Zhang JL, Hu H, Zhang SB (2017) Superoxide generated in the chloroplast stroma causes photoinhibition of photosystem I in the shade-establishing tree species Psychotria henryi. Photosynth Res 132:293–303

    Article  PubMed  CAS  Google Scholar 

  27. Klüghammer C, Schreiber U (2008) Saturation pulse method for assessment of energy conversion in PSI. PAM Appl Notes 1:11–14

    Google Scholar 

  28. Kojima K, Oshita M, Nanjo Y, Kasai K, Tozawa Y, Hayashi H, Nishiyama Y (2007) Oxidation of elongation factor G inhibits the synthesis of the D1 protein of photosystem II. Mol Microbiol 65:936–947

    Article  PubMed  CAS  Google Scholar 

  29. Kono M, Noguchi K, Terashima I (2014) Roles of the cyclic electron flow around PSI (CEF-PSI) and O2-dependent alternative pathways in regulation of the photosynthetic electron flow in short-term fluctuating light in Arabidopsis thaliana. Plant Cell Physiol 55:990–1004

    Article  PubMed  CAS  Google Scholar 

  30. Kramer DM, Johnson G, Kiirats O, Edwards GE (2004) New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth Res 79:209 – 218

    Article  PubMed  CAS  Google Scholar 

  31. Krieger-Liszkay A (2005) Singlet oxygen production in photosynthesis. J Exp Bot 56:337–346

    Article  PubMed  CAS  Google Scholar 

  32. Krieger-Liszkay A, Kós PB, Hideg É (2011) Superoxide anion radicals generated by methylviologen in photosystem I damage photosystem II. Physiol Plant 142:17–25

    Article  PubMed  CAS  Google Scholar 

  33. Mano J, Ohno C, Domae Y, Asada K (2001) Chloroplastic ascorbate peroxidase is the primary target of methylviologen-induced photooxidative stress in spinach leaves: its relevance to monodehydroascorbate radical detected with in vivo ESR. Biochim Biophys Acta 1504:275–287

    Article  PubMed  CAS  Google Scholar 

  34. Melis A (1999) Photosystem-II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo? Trends Plant Sci 4:130–135

    Article  PubMed  CAS  Google Scholar 

  35. Mohanty P, Allakhverdiev SI, Murata N (2007) Application of low temperatures during photoinhibition allows characterization of individual steps in photodamage and the repair of photosystem II. Photosynth Res 94:217–224

    Article  PubMed  CAS  Google Scholar 

  36. Munekage Y, Hojo M, Meurer J, Endo T, Tasaka M, Shikanai T (2002) PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell 110:361–371

    Article  PubMed  CAS  Google Scholar 

  37. Munekage Y, Hashimoto M, Miyake C, Tomizawa KI, Endo T, Tasaka M, Shikanai T (2004) Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 429:579–582

    Article  PubMed  CAS  Google Scholar 

  38. Munekage YN, Genty B, Peltier G (2008) Effect of PGR5 impairment on photosynthesis and growth in Arabidopsis thaliana. Plant Cell Physiol 49:1688–1698

    Article  PubMed  CAS  Google Scholar 

  39. Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007) Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta 1767:414–421

    Article  PubMed  CAS  Google Scholar 

  40. Nishiyama Y, Yamamoto H, Allakhverdiev SI, Inaba M, Yokota A, Murata N (2001) Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery. EMBO J 20:5587–5594

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Nishiyama Y, Allakhverdiev SI, Murata N (2005) Inhibition of the repair of photosystem II by oxidative stress in cyanobacteria. Photosynth Res 84:1–7

    Article  PubMed  CAS  Google Scholar 

  42. Nishiyama Y, Allakhverdiev SI, Murata N (2011) Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II. Physiol Plant 142:35–46

    Article  PubMed  CAS  Google Scholar 

  43. Oelze ML, Vogel MO, Alsharafa K, Kahmann U, Viehhauser A, Maurino VG, Dietz KJ (2011) Efficient acclimation of the chloroplast antioxidant defence of Arabidopsis thaliana leaves in response to a 10-or 100-fold light increment and the possible involvement of retrograde signals. J Exp Bot 63:1297–1313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Sejima T, Takagi D, Fukayama H, Makino A, Miyake C (2014) Repetitive short-pulse light mainly inactivates photosystem I in sunflower leaves. Plant Cell Physiol 55:1184–1193

    Article  PubMed  CAS  Google Scholar 

  45. Shaku K, Shimakawa G, Hashiguchi M, Miyake C (2015) Reduction-induced suppression of electron flow (RISE) in the photosynthetic electron transport system of Synechococcus elongatus PCC 7942. Plant Cell Physiol 57:1443–1453

    PubMed  Google Scholar 

  46. Shikanai T, Yamamoto H (2017) Contribution of cyclic and pseudo-cyclic electron transport to the formation of proton motive force in chloroplasts. Mol Plant 10:20–29

    Article  PubMed  CAS  Google Scholar 

  47. Sonoike K (1995) Selective photoinhibition of photosystem I in isolated thylakoid membranes from cucumber and spinach. Plant Cell Physiol 36:825–830

    Article  CAS  Google Scholar 

  48. Sonoike K (1996) Photoinhibition of photosystem I: its physiological significance in the chilling sensitivity of plants. Plant Cell Physiol 37:239–247

    Article  CAS  Google Scholar 

  49. Sonoike K, Terashima I (1994) Mechanism of photosystem-I photoinhibition in leaves of Cucumis sativus L. Planta 194:287–293

    Article  CAS  Google Scholar 

  50. Sonoike K, Terashima I, Iwaki M, Itoh S (1995a) Destruction of photosystem I iron-sulfur centers in leaves of Cucumis sativus L. by weak illumination at chilling temperatures. FEBS Lett 362:235–238

    Article  PubMed  CAS  Google Scholar 

  51. Sonoike K, Ishibashi M, Watanabe A (1995b) Chilling sensitive steps in leaves of Phaseolus vulgaris L. Examination of the effects of growth irradiances on PS I photoinhibition. In: Mathis P (ed) Photosynthesis: from light to biosphere, vol 4. Kluwer, Dordrecht, pp 853–856

    Google Scholar 

  52. Sonoike K, Kamo M, Hihara Y, Hiyama T, Enami I (1997) The mechanism of the degradation of psaB gene product, one of the photosynthetic reaction center subunits of photosystem I, upon photoinhibition. Photosynth Res 53:55–63

    Article  CAS  Google Scholar 

  53. Suorsa M (2015) Cyclic electron flow provides acclimatory plasticity for the photosynthetic machinery under various environmental conditions and developmental stages. Front Plant Sci 6:800

    Article  PubMed  PubMed Central  Google Scholar 

  54. Suorsa M, Jarvi S, Grieco M, Nurmi M, Pietrzykowska M, Rantala M, Kangasjarvi S, Paakkarinen V, Tikkanen M, Jansson S, Aro EM (2012) PROTON GRADIENT REGULATION5 is essential for proper acclimation of Arabidopsis photosystem I to naturally and artificially fluctuating light conditions. Plant Cell 24:2934–2948

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Suorsa M, Rossi F, Tadini L, Labs M, Colombo M, Jahns P, Kater MM, Leister D, Finazzi G, Aro EM, Barbato R, Pesaresi P (2016) PGR5-PGRL1-dependent cyclic electron transport modulates linear electron transport rate in Arabidopsis thaliana. Mol Plant 9:271–288

    Article  PubMed  CAS  Google Scholar 

  56. Takagi D, Takumi S, Hashiguchi M, Sejima T, Miyake C (2016) Superoxide and singlet oxygen produced within the thylakoid membranes both cause photosystem I photoinhibition. Plant Physiol 171:1626–1634

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Takagi D, Ishizaki K, Hanawa H, Mabuchi T, Shimakawa G, Yamamoto H, Miyake C (2017) Diversity of strategies for escaping reactive oxygen species production within photosystem I among land plants: P700 oxidation system is prerequisite for alleviating photoinhibition in photosystem I. Physiol Plant 161:56–74

    Article  PubMed  CAS  Google Scholar 

  58. Terashima I, Funayama S, Sonoike K (1994) The site of photoinhibition in leaves of Cucumis-sativus L. at low temperatures is photosystem I, not photosystem II. Planta 193:300–306

    Article  CAS  Google Scholar 

  59. Terashima I, Fujita T, Inoue T, Chow WS, Oguchi R (2009) Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green. Plant Cell Physiol 50:684–697

    Article  PubMed  CAS  Google Scholar 

  60. Tikkanen M, Aro EM (2014) Integrative regulatory network of plant thylakoid energy transduction. Trends Plant Sci 19:10–17

    Article  PubMed  CAS  Google Scholar 

  61. Tikkanen M, Mekala NR, Aro EM (2014) Photosystem II photoinhibition-repair cycle protects Photosystem I from irreversible damage. Biochim Biophys Acta 1837:210–215

    Article  PubMed  CAS  Google Scholar 

  62. Tikkanen M, Rantala S, Aro EM (2015) Electron flow from PSII to PSI under high light is controlled by PGR5 but not by PSBS. Front Plant Sci 6:521

    Article  PubMed  PubMed Central  Google Scholar 

  63. Tiwari A, Mamedov F, Grieco M, Suorsa M, Jajoo A, Styring S, Tikkanen M, Aro EM (2016) Photodamage of iron–sulphur clusters in photosystem I induces non-photochemical energy dissipation. Nat Plants 2:16035

    Article  PubMed  CAS  Google Scholar 

  64. Vass I (2011) Role of charge recombination processes in photodamage and photoprotection of the photosystem II complex. Physiol Plant 142:6–16

    Article  PubMed  CAS  Google Scholar 

  65. Yamamoto H, Takahashi S, Badger MR, Shikanai T (2016) Artificial remodelling of alternative electron flow by flavodiiron proteins in Arabidopsis. Nat Plants 2:16012

    Article  PubMed  CAS  Google Scholar 

  66. Yamori W (2016) Photosynthetic response to fluctuating environments and photoprotective strategies under abiotic stress. J Plant Res 129:379–395

    Article  PubMed  CAS  Google Scholar 

  67. Yamori W, Shikanai T (2016) Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis and plant growth. Annu Rev Plant Biol 67:81–106

    Article  PubMed  CAS  Google Scholar 

  68. Yamori W, Shikanai T, Makino A (2015) Photosystem I cyclic electron flow via chloroplast NADH dehydrogenase-like complex performs a physiological role for photosynthesis at low light. Sci Rep 5:13908

    Article  PubMed  PubMed Central  Google Scholar 

  69. Yamori W, Makino A, Shikanai T (2016) A physiological role of cyclic electron transport around photosystem I in sustaining photosynthesis under fluctuating light in rice. Sci Rep 6:20147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Yamori W, Sakata N, Suzuki Y, Shikanai T, Makino A (2011) Cyclic electron flow around photosystem I via chloroplast NAD(P)H dehydrogenase (NDH) complex performs a significant physiological role during photosynthesis and plant growth at low temperature in rice. Plant J 68:966–976

    Article  PubMed  CAS  Google Scholar 

  71. Zivcak M, Brestic M, Kunderlikova K, Sytar O, Allakhverdiev SI (2015) Repetitive light pulse-induced photoinhibition of photosystem I severely affects CO2 assimilation and photoprotection in wheat leaves. Photosynth Res 126:449–463

    Article  PubMed  CAS  Google Scholar 

  72. Zulfugarov IS, Tovuu A, Eu YJ, Dogsom B, Poudyal RS, Nath K, Hall M, Banerjee M, Yoon UC, Moon YH, An G, Jansson S, Lee CH (2014) Production of superoxide from Photosystem II in a rice (Oryza sativa L.) mutant lacking PsbS. BMC Plant Biol 14:242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant 31670343) and Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant 2016347).

Author information

Affiliations

Authors

Contributions

WH and S-BZ designed the study. WH conducted experiments. WH, MT, and S-BZ analyzed data. WH wrote the first draft of the manuscript, which was intensively edited by all authors.

Corresponding author

Correspondence to Shi-Bao Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, W., Tikkanen, M. & Zhang, SB. Photoinhibition of photosystem I in Nephrolepis falciformis depends on reactive oxygen species generated in the chloroplast stroma. Photosynth Res 137, 129–140 (2018). https://doi.org/10.1007/s11120-018-0484-1

Download citation

Keywords

  • Chlorophyll fluorescence
  • High light
  • Methyl viologen
  • Photoinhibition
  • Photosystem
  • Superoxide