On the source of non-linear light absorbance in photosynthetic samples

Abstract

This study presents a mathematical model, which expresses the absorbance of a photosynthetic sample as a non-linear polynomial of selected reference absorbance. The non-linearity is explained by inhomogeneities of a product of pigment concentration and light path length in the sample. The quadratic term of the polynomial reflects the extent of inhomogeneities, and the cubic term is related to deviation of the product distribution from a symmetric one. The model was tested by measurements of suspension of unstacked tobacco thylakoid membranes of different chlorophyll concentrations in cuvettes of different thicknesses. The absorbance was calculated from the diffuse transmittance and reflectance of sample, illuminated by perpendicular collimated light. The evaluated quantity was a sensitivity defined as the relative difference between the sample absorbance and the reference absorbance to the reference absorbance. The non-linearity of sample absorbance was demonstrated by a characteristic deviation of the sensitivity spectrum from a constant value. The absorbance non-linearity decreased on an increase of the product of pigment concentration and cuvette thickness. The model suggests that the sieve and detour effects influence the absorbance in a similar way. The model may be of interest in modeling of leaf or canopy optics including light absorption and scattering.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Agati G, Fusi F, Mazzinghi P (1993) A simple approach to the evaluation of the reabsorption of chlorophyll fluorescence spectra in intact leaves. J Photochem Photobiol B: Biol 17:163–171

    CAS  Article  Google Scholar 

  2. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723

    Article  Google Scholar 

  3. Baránková B, Lazár D, Nauš J (2016) Analysis of the effect of chloroplast arrangement on optical properties of green tobacco leaves. Remote Sens Environ 174:181–196

    Article  Google Scholar 

  4. Bolstad PV, Gower ST (1990) Estimation of leaf area index in fourteen southern Wisconsin forest stands using a portable radiometer. Tree Physiol 7:115–124

    Article  PubMed  Google Scholar 

  5. Bryant FD, Seiber BA, Latimer P (1969) Absolute optical cross sections of cells and chloroplasts. Arch Biochem Biophys 135:79–108

    Google Scholar 

  6. Caffarri S, Kouřil R, Kereïche S, Boekema EJ, Croce R (2009) Functional architecture of higher plant photosystem II supercomplexes. EMBO J 28:3052–3063

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Cordón GB, Lagorio MG (2006) Re-absorption of chlorophyll fluorescence in leaves revisited. A comparison of correction models. Photochem Photobiol Sci 5:735–740

    Article  PubMed  Google Scholar 

  8. Das M, Rabinowitch E, Szalay L, Papageorgiou G (1967) The “sieve effect” in Chlorella suspensions. J Phys Chem 71:3543–3549

    CAS  Article  Google Scholar 

  9. Davis PA, Caylor S, Whippo CW, Hangarter RP (2011) Changes in leaf optical properties associated with light-dependent chloroplast movements. Plant Cell Environ 34:2047–2059

    CAS  Article  PubMed  Google Scholar 

  10. Dennison WC, Orth RJ, Moore KA, Stevenson JC, Carter V, Kollar S, Bergstrom PW, Batiuk RA (1993) Assessing water quality with submersed aquatic vegetation. Bioscience 43:86–94

    Article  Google Scholar 

  11. Duysens LNM (1956) The flattening of the absorption spectrum of suspensions as compared to that of solutions. Biochim Biophys Acta 19:1–12

    CAS  Article  PubMed  Google Scholar 

  12. Fukshansky L (1978) On the theory of light absorption in non-homogeneous objects. The sieve-effect in one-component suspensions. J Math Biol 6:177–196

    Article  Google Scholar 

  13. Fukshansky L (1991) Photon transport in leaf tissue: application in plant physiology. In: Myneni RB, Ross J (eds) Photon-vegetation interactions, Springer, New York, pp 263–302

    Google Scholar 

  14. Gitelson AA, Buschmann C, Lichtenthaler HK (1998) Leaf chlorophyll fluorescence corrected for re-absorption by means of absorption and reflectance measurements. J Plant Physiol 152:283–296

    CAS  Article  Google Scholar 

  15. Higashide T (2009) Light interception by tomato plants (Solanum lycoparsicum) grown on a sloped field. Agricult Forest Meteorol 149:756–762

    Article  Google Scholar 

  16. Hirota O (1987a) Photosynthesis-light response curve derived from light absorbed in a leaf I. Model of light absorption in each mesophyll layer of a leaf. Soybean corn plants J Fac Agricult Kyushu Univ 31:191–201

    Google Scholar 

  17. Hirota O (1987b) Photosynthesis-light response curve derived from light absorbed in a leaf. II. Soybean and corn plants. J Fac Agricult Kyushu Univ 31:203–211

    Google Scholar 

  18. Hlavinka J, Naus J, Spundova M (2013) Anthocyanin contribution to chlorophyll meter readings and its correction. Photosynth Res 118:277–295

    CAS  Article  PubMed  Google Scholar 

  19. Krekov GM, Krekova MM, Lisenko AA, Sukhanov Y (2009) Radiative characteristics of plant leaf. Atmosph Ocean Opt 22:241–259

    CAS  Article  Google Scholar 

  20. Kubelka P, Munk F (1931) Ein Beitrag zur Optik der Farbanstriche. Z Tech Phys 12:593–601

    Google Scholar 

  21. Larsen ML, Clark AS (2014) On the link between particle size and deviations from the Beer-Lambert-Bouguer law for direct transmission. J Quant Spectrosc Radiat Transfer 133:646–651

    CAS  Article  Google Scholar 

  22. Latimer P (1983) The deconvolution of absorption spectra of green plant materials-improved corrections for sieve effect. Photochem Photobiol 38:731–734

    Article  Google Scholar 

  23. Latimer P, Eubanks CAH (1962) Absorption spectrophotometry of turbid suspension: a method of correcting for large systematic distortions. Archs Biochem Biophys 98:274–285

    CAS  Article  Google Scholar 

  24. Latimer P, Noh SJ (1987) Light propagation in moderate dense particle systems: a reexamination of the Kubelka-Munk theory. Appl Opt 26:514–523

    CAS  Article  PubMed  Google Scholar 

  25. Latimer P, Rabinowitch E (1959) Selective scattering of light by pigments in vivo. Archs Biochem Biophys 84:428–441

    CAS  Article  Google Scholar 

  26. Lee DW, Bone RA, Tarsis SL, Storch D (1990) Correlates of leaf optical properties in tropical forest sun and extreme-shade plants. Amer J Bot 77:370–380

    Article  Google Scholar 

  27. Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Meth Enzymol 148:350–382

    CAS  Article  Google Scholar 

  28. Licker MD et al (2004) McGraw-Hill concise encyclopedia of physics, Fifth edition. McGraw-Hill Companies, New York

    Google Scholar 

  29. Maikala RV (2010) Modified Beer’s law – historical perspectives and relevance in near-infrared monitoring of optical properties of human tissue. Int J Industr Ergonim 40:125–134

    Article  Google Scholar 

  30. McClendon JH, Fukshansky L (1990a) On the interpretation of absorption spectra of leaves. – I. Introduction and the correction of leaf spectra for surface reflection. Photochem Photobiol 51:203–210

    CAS  Article  Google Scholar 

  31. McClendon JH, Fukshansky L (1990b) On the interpretation of absorption spectra of leaves. – II. The non-absorbed ray of the sieve effect and the mean optical pathlength in the remainder of the leaf. Photochem Photobiol 51:211–216

    CAS  Article  Google Scholar 

  32. Mellqvist J, Rosén A (1996a) DOAS for flue gas monitoring – I. temperature effects in the U.V./visible absorption spectra of NO, NO2, SO2 and NH3. Lambert law for the U.V./visible absorption spectra of NO, NO2, SO2 and NH3. J Quant Spectrosc Radiat Trans 56:187–208

    CAS  Article  Google Scholar 

  33. Mellqvist J, Rosén A (1996b) DOAS for flue gas monitoring – II. Deviations from the Beer-Lambert law for the U.V./visible absorption spectra of NO, NO2, SO2 and NH3. J Quant Spectrosc Radiat Trans 56:209–224

    CAS  Article  Google Scholar 

  34. Mellqvist J, Axelsson H, Rosén A (1996) DOAS for flue gas monitoring – III. In situ monitoring of sulfur dioxide, nitrogen monoxide and ammonia. J Quant Spectrosc Radiat Trans 56:225–240

    CAS  Article  Google Scholar 

  35. Merzlyak MN, Naqvi KR (2000) On recording the true absorption spectrum and scattering spectrum of a turbid sample: application to cell suspensions of cyanobacterium Anabaena variabilis. J Photochem Photobiol 58:123–129

    CAS  Article  Google Scholar 

  36. Naus J, Klinkovsky T, Ilik P, Cikanek D (1994) Model studies of chlorophyll fluorescence reabsorption at chloroplast level under different exciting conditions. Photosynth Res 40:67–74

    CAS  Article  PubMed  Google Scholar 

  37. Rabideau GS, French CS, Holt AS (1946) The absorption and reflection spectra of leaves, chloroplast suspensions and chloroplast fragments as measured in an Ulbricht sphere. Am J Bot 33:769–777

    CAS  Article  Google Scholar 

  38. Richter T, Fukshansky L (1994) Authentic in-vivo absorption-spectra for chlorophyll in leaves derived from in-situ and in-vitro measurements. Photochem Photobiol 59:237–247

    CAS  Article  Google Scholar 

  39. Shaw SL, Ehrhardt DW (2013) Smaller, faster, brighter: advances in optical imaging of living plant cells. Annu Rev Plant Biol 64:351–375

    CAS  Article  PubMed  Google Scholar 

  40. Shaw RA, Kostinski AB, Lanterman DD (2002) Super-exponential extinction of radiation in a negatively correlated random medium. J Quant Spectrosc Rad Transfer 75:13–20

    CAS  Article  Google Scholar 

  41. Shibata K, Benson AA, Calvin M (1954) The absorption spectra of living micro-organisms. Biochim Biophys Acta 15:461–470

    CAS  Article  PubMed  Google Scholar 

  42. Spietz P, Martín JCG, Burrows JP (2006) Quantitative treatment of coarsely binned low-resolution recordings in molecular absorption spectroscopy. Spectrochim Acta A 64:722–735

    Article  Google Scholar 

  43. Terashima I, Fujita T, Inoue T, Chow WS, Oguchi R (2009) Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green. Plant Cell Physiol 50:684–697

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant No. LO1204 from the National Program of Sustainability I, Ministry of Education, Youth and Sports, Czech Republic, and by internal grants of Palacký University Olomouc no. IGA_PrF_2016_013 and IGA_PrF_2017_017.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jan Nauš.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1060 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nauš, J., Lazár, D., Baránková, B. et al. On the source of non-linear light absorbance in photosynthetic samples. Photosynth Res 136, 345–355 (2018). https://doi.org/10.1007/s11120-017-0468-6

Download citation

Keywords

  • Concentration
  • Light path length
  • Model
  • Remote sensing
  • Sieve and detour effects
  • Spatial inhomogeneity
  • Asymmetry of inhomogeneity distribution