Skip to main content

Advertisement

Log in

Mechanisms of drought-induced dissipation of excitation energy in sun- and shade-adapted drought-tolerant mosses studied by fluorescence yield change and global and target analysis of fluorescence decay kinetics

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Some mosses stay green and survive long even under desiccation. Dissipation mechanisms of excess excitation energy were studied in two drought-tolerant moss species adapted to contrasting niches: shade-adapted Rhytidiadelphus squarrosus and sun-adapted Rhytidium rugosum in the same family. (1) Under wet conditions, a light-induced nonphotochemical quenching (NPQ) mechanism decreased the yield of photosystem II (PSII) fluorescence in both species. The NPQ extent saturated at a lower illumination intensity in R. squarrosus, suggesting a larger PSII antenna size. (2) Desiccation reduced the fluorescence intensities giving significantly lower F 0 levels and shortened the overall fluorescence lifetimes in both R. squarrosus and R. rugosum, at room temperature. (3) At 77 K, desiccation strongly reduced the PSII fluorescence intensity. This reduction was smaller in R. squarrosus than in R. rugosum. (4) Global and target analysis indicated two different mechanisms of energy dissipation in PSII under desiccation: the energy dissipation to a desiccation-formed strong fluorescence quencher in the PSII core in sun-adapted R. rugosum (type-A quenching) and (5) the moderate energy dissipation in the light-harvesting complex/PSII in shade-adapted R. squarrosus (type-B quenching). The two mechanisms are consistent with the different ecological niches of the two mosses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

Chl:

Chlorophyll

DAS:

Decay-associated spectra

F 0 and F M :

Fluorescence yield levels at the dark-adapted and illuminated maximum conditions, respectively

F684, F695, and F730:

Fluorescence bands at 684, 695, and 730 nm, respectively

IRF:

Instrument response function

LHCII:

Light-harvesting complex II

NPQ:

Nonphotochemical quenching of fluorescence

PAM:

Pulse amplitude-modulated fluorescence measurement

PPFD:

Photosynthetic photon flux density

PSI and PSII:

Photosystems I and II, respectively

PSIIRC:

Reaction center of PSII

red-Chl:

Chlorophyll a species with long-wavelength fluorescence band

SAS:

Species-associated spectra

References

  • Aro EM, Virgin I, Andersson B (1993) Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochem Biophys Acta 1143:113–134

    CAS  PubMed  Google Scholar 

  • Bonente G, Ballotari M, Truong TB, Morosinotto T, Ahn TK, Fleming GR, Niyogi KK, Bassi R (2010) Analysis of LhcSR3, a protein essential for feedback de-excitation in the green alga Chlamydomonas reinhardtii. PLoS Biol 9, e1000577

    Article  Google Scholar 

  • Bukhov NG, Kopecky J, Pfündel EE, Klughammer C, Heber U (2001) A few molecules of zeaxanthin per reaction centre of photosystem II permits effective thermal dissipation of light energy in a poikilohydric moss. Planta 212:739–748

    Article  CAS  PubMed  Google Scholar 

  • Carniell FC, Zanelli D, Bertuzzi S, Tretiach M (2015) Desiccation tolerance and lichenization: a case study with the aeroterrestrial microalga Trebouxia sp. (Chlorophyta). Planta 242:493–505

    Article  Google Scholar 

  • Demmig-Adams B (1990) Carotenoids and photoprotection of plants: a role for the xanthophyll zeaxanthin. Biochem Biophys Acta 1020:1–24

    CAS  Google Scholar 

  • Groot ML, Frese RN, de Weerd FL, Bromek K, Pettersson A, Peterman EJ, van Stokkum IHM, van Grondelle R, Dekker JP (1999) Spectroscopic properties of the CP43 core antenna protein of photosystem II. Biophys J 77:3328–3340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heber U (2008) Photoprotection of green plants: a mechanism of ultra-fast thermal energy dissipation in desiccated lichens. Planta 228:641–650

    Article  CAS  PubMed  Google Scholar 

  • Heber U, Bilger W, Shuvalov VA (2006) Thermal energy dissipation in reaction centres and in the antenna of photosystem II protects desiccated poikilohydric mosses against photooxidation. J Exp Bot 57:2993–3006

    Article  CAS  PubMed  Google Scholar 

  • Horton P, Wentworth M, Ruban A (2005) Control of the light harvesting function of chloroplast membranes: the LHCII-aggregation model for non-photochemical quenching. FEBS Lett 579:4201–4206

    Article  CAS  PubMed  Google Scholar 

  • Komura M, Itoh S (2009) Fluorescence measurement by a streak camera in a single-photon-counting mode. Photosynth Res 101:119–133

    Article  CAS  PubMed  Google Scholar 

  • Komura M, Shibata Y, Itoh S (2006) A new fluorescence band F689 in photosystem II revealed by picosecond analysis at 4–77 K: function of two terminal energy sinks F689 and F695 in PS II. Biochem Biophys Acta 1757, 1657–1668

    CAS  PubMed  Google Scholar 

  • Komura M, Yamagishi A, Shibata Y, Iwasaki I, Itoh S (2010) Mechanism of strong quenching of photosystem II chlorophyll fluorescence under drought stress in a lichen, Physciella melanchla, studied by subpicosecond fluorescence spectroscopy. Biochem Biophys Acta 1797:331–338

    CAS  PubMed  Google Scholar 

  • Kosugi M, Arita M, Shizuma R (2009) Responses to desiccation stress in lichens are different from those in their photobionts. Plant Cell Physiol 50:879–888

    Article  CAS  PubMed  Google Scholar 

  • Kosugi M, Miyake H, Yamakawa H, Shibata Y, Miyazawa A, Sugimura T, Satoh K, Itoh S, Kashino Y (2013) Arabitol provided by lichenous fungi enhances ability to dissipate excess light energy in a symbiotic green alga under desiccation. Plant Cell Physiol 54:1316–1325

    Article  CAS  PubMed  Google Scholar 

  • Li X-P, Gilmore AM, Caffari S, Bassi R, Golan T, Kramer D, Niyogi KK (2004) Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein. J Biol Chem 279:22866–22874

    Article  CAS  PubMed  Google Scholar 

  • Miyake H, Komura M, Itoh S, Kosugi M, Kashino Y, Satoh K, Shibata Y (2011) Multiple dissipation components of excess light energy in dry lichen revealed by ultrafast fluorescence study at 5 K. Photosynth Res 110:39–48

    Article  CAS  PubMed  Google Scholar 

  • Mullen KM, van Stokkum IHM (2007) TIMP: an R package for modeling multi-way spectroscopic measurements. J Stat Softw 18(3):1–46

    Article  Google Scholar 

  • Murata N (1969) Control of excitation transfer in photosynthesis. Light-induced change of chlorophyll a fluorescence in Porphyridium cruentum. Biochem Biophys Acta 172:242–251

    CAS  PubMed  Google Scholar 

  • Niyogi KK (1999) Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50:333–359

    Article  CAS  PubMed  Google Scholar 

  • Papageorgiou GC (2012) Fluorescence emission from the photosynthetic apparatus. Adv Photosynth Respir 34:415–443

    Article  CAS  Google Scholar 

  • Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62

    Article  CAS  PubMed  Google Scholar 

  • Slavov C, Reus M, Holzwarth AR (2013) Two different mechanisms cooperate in the desiccation-induced excited state quenching in Parmelia lichen. J Phys Chem B 117:11326–11336

    Article  CAS  PubMed  Google Scholar 

  • Snellenburg JJ, Laptenok SP, Seger R, Mullen KM, van Stokkum IHM (2012) Glotaran: a Java-based graphical user interface for the R package TIMP. J Stat Softw 49(3):1–22

    Article  Google Scholar 

  • Snellenburg JJ, Dekker JP, van Grondelle R, van Stokkum IHM (2013) Functional compartmental modeling of the photosystems in the thylakoid membrane at 77 K. J Phys Chem B 117(38):11363–11371

    Article  CAS  PubMed  Google Scholar 

  • Veerman J, Vasilev S, Paton GT, Ramanauskas J, Bruce D (2007) Photoprotection in the lichen Parmelia sulcata: the origins of desiccation-induced fluorescence quenching. Plant Physiol 145:997–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamakawa H, Itoh S (2013) Dissipation of excess excitation energy by drought-induced nonphotochemical quenching in two species of drought tolerant moss: desiccation-induced acceleration of photosystem II fluorescence decay. Biochemistry 52:4451–4459

    Article  CAS  PubMed  Google Scholar 

  • Yamakawa H, Fukushima Y, Itoh S, Heber U (2012) Three different mechanisms of energy dissipation of a desiccation-tolerant moss serve one common purpose: to protect reaction centres against photo-oxidation. J Exp Bot 63:3765–3776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto HY, Kamite L (1972) The effect of dithiothreitol on violaxanthin de-epoxidation and absorbance changes in the 500 nm region. Biochem Biophys Acta 267:538–543

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Ministry of Education, Culture, Sports, Science, and Technology (KAKENHI Nos. 26440139 and 17K07440) to S.I. The authors thank Dr. Yoshimasa Fukusima at Advanced Research Institute for Natural Science and Technology in Osaka City University for his help in DAS analysis. H. M. and S. I. thank Dr. Masahiro Ishiura at the Center for Gene Research and Tsutomu Kouyama at the Department of Physics in Nagoya University for their encouragement during the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Itoh.

Additional information

The paper is dedicated to Ulrich Heber, who died on June 11, 2016, at the age of 85.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2915 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamakawa, H., van Stokkum, I.H.M., Heber, U. et al. Mechanisms of drought-induced dissipation of excitation energy in sun- and shade-adapted drought-tolerant mosses studied by fluorescence yield change and global and target analysis of fluorescence decay kinetics. Photosynth Res 135, 285–298 (2018). https://doi.org/10.1007/s11120-017-0465-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-017-0465-9

Keywords

Navigation