Advertisement

Photosynthesis Research

, Volume 136, Issue 2, pp 147–160 | Cite as

Low oxygen affects photophysiology and the level of expression of two-carbon metabolism genes in the seagrass Zostera muelleri

  • Mikael Kim
  • Kasper Elgetti Brodersen
  • Milán Szabó
  • Anthony W. D. Larkum
  • John A. Raven
  • Peter J. Ralph
  • Mathieu Pernice
Original Article

Abstract

Seagrasses are a diverse group of angiosperms that evolved to live in shallow coastal waters, an environment regularly subjected to changes in oxygen, carbon dioxide and irradiance. Zostera muelleri is the dominant species in south-eastern Australia, and is critical for healthy coastal ecosystems. Despite its ecological importance, little is known about the pathways of carbon fixation in Z. muelleri and their regulation in response to environmental changes. In this study, the response of Z. muelleri exposed to control and very low oxygen conditions was investigated by using (i) oxygen microsensors combined with a custom-made flow chamber to measure changes in photosynthesis and respiration, and (ii) reverse transcription quantitative real-time PCR to measure changes in expression levels of key genes involved in C4 metabolism. We found that very low levels of oxygen (i) altered the photophysiology of Z. muelleri, a characteristic of C3 mechanism of carbon assimilation, and (ii) decreased the expression levels of phosphoenolpyruvate carboxylase and carbonic anhydrase. These molecular-physiological results suggest that regulation of the photophysiology of Z. muelleri might involve a close integration between the C3 and C4, or other CO2 concentrating mechanisms metabolic pathways. Overall, this study highlights that the photophysiological response of Z. muelleri to changing oxygen in water is capable of rapid acclimation and the dynamic modulation of pathways should be considered when assessing seagrass primary production.

Keywords

Diffusive boundary layer Photosynthesis Respiration RT-qPCR Seagrass 

Notes

Acknowledgements

The authors would like to thank UTS and C3 for strategic research support as well as Dr Audrey Commault, Dr Sutinee Sinutok and Paul Brooks for technical assistance. We also like to thank the editor and two anonymous reviewers for their comments which contributed in improving the quality of this article. The University of Dundee is a registered Scottish charity, No. 015096.

Funding

This study was funded by an Australian Research Council Linkage Grant (LP11020045), Climate Change Cluster Honours Scholarship, University of Technology Sydney (MK) and the Augustinus Foundation (KEB).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Supplementary material

11120_2017_452_MOESM1_ESM.docx (3.5 mb)
Supplementary material 1 (DOCX 3538 KB)

References

  1. Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of Real-Time Quantitative Reverse Transcription-PCR Data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250. doi: 10.1158/0008-5472.can-04-0496 CrossRefPubMedGoogle Scholar
  2. Anderson M, Gorley RN, Clarke RK (2008) Permanova+ for primer: guide to software and statistical methods. PRIMER-E, PlymouthGoogle Scholar
  3. Aubry S, Brown NJ, Hibberd JM (2011) The role of proteins in C3 plants prior to their recruitment into the C4 pathway. J Exp Bot 62:3049–3059. doi: 10.1093/jxb/err012 CrossRefPubMedGoogle Scholar
  4. Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113. doi: 10.1146/annurev.arplant.59.032607.092759 CrossRefPubMedGoogle Scholar
  5. Beardall J, Quigg A, Raven JA (2003) Oxygen consumption: photorespiration and chlororespiration. Photosynthesis in algae. Springer, New York, pp 157–181Google Scholar
  6. Beck MW et al (2001) The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates: a better understanding of the habitats that serve as nurseries for marine species and the factors that create site-specific variability in nursery quality will improve conservation and management of these areas. Bioscience 51:633–641CrossRefGoogle Scholar
  7. Beer S, Rehnberg J (1997) The acquisition of inorganic carbon by the seagrass Zostera marina. Aquat Bot 56:277–283CrossRefGoogle Scholar
  8. Beer S, Wetzel RG (1981) Photosynthetic carbon metabolism in the submerged aquatic angiosperm Scirpus subterminalis. Plant Sci Lett 21:199–207CrossRefGoogle Scholar
  9. Beer S, Eshel A, Waisel Y (1977) Carbon metabolism in seagrasses I. The utilization of exogenous inorganic carbon species in photosynthesis. J Exp Bot 28:1180–1189CrossRefGoogle Scholar
  10. Beer S, Shomer-Ilan A, Waisel Y (1980) Carbon metabolism in seagrasses II. Patterns of photosynthetic CO2 incorporation. J Exp Bot 31:1019–1026CrossRefGoogle Scholar
  11. Beer S, Vilenkin B, Weil A, Veste M, Susel L, Eshel A (1998) Measuring photosynthetic rates in seagrasses by pulse amplitude modulated (PAM) fluorometry. Mar Ecol Prog Ser 174:293–300CrossRefGoogle Scholar
  12. Beer S, Larsson C, Poryan O, Axelsson L (2000) Photosynthetic rates of Ulva (Chlorophyta) measured by pulse amplitude modulated (PAM) fluorometry. Eur J Phycol 35:69–74. doi: 10.1080/09670260010001735641 CrossRefGoogle Scholar
  13. Beer S, Bjork M, Hellblom F, Axelsson L (2002) Inorganic carbon utilization in marine angiosperms (seagrasses). Funct Plant Biol 29:349–354CrossRefGoogle Scholar
  14. Benedict CR, Scott JR (1976) Photosynthetic carbon metabolism of a marine grass. Plant Physiol 57:876–880CrossRefPubMedPubMedCentralGoogle Scholar
  15. Björk M, Haglund K, Ramazanov Z, Pedersén M (1993) Inducible mechanisms for HCO3 utilization and repression of photorespiration in protoplasts and thalli of three species of Ulva (Chlorophyta). J Phycol 29:166–173. doi: 10.1111/j.0022-3646.1993.00166.x CrossRefGoogle Scholar
  16. Björk M, Weil A, Semesi S, Beer S (1997) Photosynthetic utilisation of inorganic carbon by seagrasses from Zanzibar, East Africa. Mar Biol 129:363–366CrossRefGoogle Scholar
  17. Black C, Burris J, Everson R (1976) Influence of oxygen concentration on photosynthesis in marine plants. Funct Plant Biol 3:81–86. doi: 10.1071/PP9760081 Google Scholar
  18. Blandon A, Zu Ermgassen PS (2014) Quantitative estimate of commercial fish enhancement by seagrass habitat in southern Australia. Estuar Coast Shelf Sci 141:1–8CrossRefGoogle Scholar
  19. Borum J, Pedersen O, Greve TM, Frankovich TA, Zieman JC, Fourqurean JW, Madden CJ (2005) The potential role of plant oxygen and sulphide dynamics in die-off events of the tropical seagrass, Thalassia testudinum. J Ecol 93:148–158. doi: 10.1111/j.1365-2745.2004.00943.x CrossRefGoogle Scholar
  20. Borum J, Pedersen O, Kotula L, Fraser MW, Statton J, Colmer TD, Kendrick GA (2016) Photosynthetic response to globally increasing CO2 of co-occurring temperate seagrass species. Plant Cell Environ 39:1240–1250. doi: 10.1111/pce.12658 CrossRefPubMedGoogle Scholar
  21. Bowes G, Salvucci ME (1989) Plasticity in the photosynthetic carbon metabolism of submersed aquatic macrophytes. Aquat Bot 34:233–266CrossRefGoogle Scholar
  22. Braun HP, Zabaleta E (2007) Carbonic anhydrase subunits of the mitochondrial NADH dehydrogenase complex (complex I) in plants. Physiol Plant 129:114–122CrossRefGoogle Scholar
  23. Brodersen KE, Nielsen DA, Ralph PJ, Kühl M (2014) A split flow chamber with artificial sediment to examine the below-ground microenvironment of aquatic macrophytes. Mar Biol 161:2921–2930. doi: 10.1007/s00227-014-2542-3 CrossRefGoogle Scholar
  24. Brodersen KE, Lichtenberg M, Paz L-C, Kühl M (2015) Epiphyte-cover on seagrass (Zostera marina L.) leaves impedes plant performance and radial O2 loss from the below-ground tissue. Front Mar Sci 2:58CrossRefGoogle Scholar
  25. Brodersen KE et al. (2017) Sediment resuspension and deposition on seagrass leaves impedes internal plant aeration and promotes phytotoxic H2S intrusion. Front Plant Sci. doi: 10.3389/fpls.2017.00657 PubMedPubMedCentralGoogle Scholar
  26. Buapet P, Björk M (2016) The role of O2 as an electron acceptor alternative to CO2 in photosynthesis of the common marine angiosperm Zostera marina L. Photosynth Res 129:1–11CrossRefGoogle Scholar
  27. Buapet P, Rasmusson LM, Gullström M, Björk M (2013) Photorespiration and carbon limitation determine productivity in temperate seagrasses. PLoS ONE 8:e83804CrossRefPubMedPubMedCentralGoogle Scholar
  28. Bulmer R, Kelly S, Jeffs A (2016) Light requirements of the seagrass, Zostera muelleri, determined by observations at the maximum depth limit in a temperate estuary, New Zealand. N Z J Mar Freshwat Res 50:1–12CrossRefGoogle Scholar
  29. Bustin SA et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622CrossRefPubMedGoogle Scholar
  30. Carlson P, Yarbro L, Sargent W, Arnold H (1988) Hypoxic stress in Thalassia testudinum: evidence from diurnal changes in rhizome gas composition. Eos 69:733–746Google Scholar
  31. Chartrand KM, Bryant CV, Carter AB, Ralph PJ, Rasheed MA (2016) Light thresholds to prevent dredging impacts on the Great Barrier Reef seagrass, Zostera muelleri ssp. capricorni. Front Mar Sci 3:106CrossRefGoogle Scholar
  32. Chi S, Wu S, Yu J, Wang X, Tang X, Liu T (2014) Phylogeny of C4-photosynthesis enzymes based on algal transcriptomic and genomic data supports an archaeal/proteobacterial origin and multiple duplication for most C4-related genes. PLoS ONE 9:e110154CrossRefPubMedPubMedCentralGoogle Scholar
  33. Chollet R, Vidal J, O’Leary MH (1996) Phosphoenol pyruvate carboxylase: a ubiquitous, highly regulated enzyme in plants. Annu Rev Plant Biol 47:273–298CrossRefGoogle Scholar
  34. Colman B, Norman EG (1997) Serine synthesis in cyanobacteria by a nonphotorespiratory pathway. Physiol Plant 100:133–136CrossRefGoogle Scholar
  35. Costanza R et al (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260CrossRefGoogle Scholar
  36. Del Prete S, Vullo D, Fisher GM, Andrews KT, Poulsen S-A, Capasso C, Supuran CT (2014) Discovery of a new family of carbonic anhydrases in the malaria pathogen Plasmodium falciparum—the η-carbonic anhydrases. Bioorg Med Chem Lett 24:4389–4396CrossRefPubMedGoogle Scholar
  37. Downton W, Bishop D, Larkum AWD, Osmond C (1976) Oxygen inhibition of photosynthetic oxygen evolution in marine plants. Funct Plant Biol 3:73–79Google Scholar
  38. Drechsler Z, Beer S (1991) Utilization of inorganic carbon by Ulva lactuca. Plant Physiol 97:1439–1444CrossRefPubMedPubMedCentralGoogle Scholar
  39. Figueroa FL, Jerez CG, Korbee N (2013) Use of in vivo chlorophyll fluorescence to estimate photosynthetic activity and biomass productivity in microalgae grown in different culture systems. Lat Am J Aquat Res 41:801–819. doi: 10.3856/vol41-issue5-fulltext-1 CrossRefGoogle Scholar
  40. Fourqurean JW et al (2012) Seagrass ecosystems as a globally significant carbon stock. Nat Geosci 5:505–509CrossRefGoogle Scholar
  41. Greiner JT, McGlathery KJ, Gunnell J, McKee BA (2013) Seagrass restoration enhances “blue carbon” sequestration in coastal waters. PloS one 8:e72469CrossRefPubMedPubMedCentralGoogle Scholar
  42. Greve TM, Borum J, Pedersen O (2003) Meristematic oxygen variability in eelgrass (Zostera marina). Limnol Oceanogr 48:210–216. doi: 10.4319/lo.2003.48.1.0210 CrossRefGoogle Scholar
  43. Harlin MM (1995) Changes in major plant groups following nutrient enrichment. Eutrophic Shallow Estuaries and Lagoons CRC Press, Inc, Boca Raton, pp 173–187Google Scholar
  44. Hellblom F, Axelsson L (2003) External HCO3 dehydration maintained by acid zones in the plasma membrane is an important component of the photosynthetic carbon uptake in Ruppia cirrhosa. Photosynth Res 77:173–181CrossRefPubMedGoogle Scholar
  45. Hellblom F, Beer S, Björk M, Axelsson L (2001) A buffer sensitive inorganic carbon utilisation system in Zostera marina. Aquat Bot 69:55–62CrossRefGoogle Scholar
  46. Hurlbert SH (1984) Pseudoreplication and the design of ecological field experiments. Ecol Monogr 54:187–211CrossRefGoogle Scholar
  47. Invers O, Zimmerman RC, Alberte RS, Perez M, Romero J (2001) Inorganic carbon sources for seagrass photosynthesis: an experimental evaluation of bicarbonate use in species inhabiting temperate waters. J Exp Mar Biol Ecol 265:203–217CrossRefGoogle Scholar
  48. Jiménez C, Niell FX, Algarra P (1987) Photosynthetic adaptation of Zostera noltii Hornem. Aquat Bot 29:217–226CrossRefGoogle Scholar
  49. Jørgensen BB, Revsbech NP (1985) Diffusive boundary layers and the oxygen uptake of sediments and detritus. Limnol Oceanogr 30:111–122. doi: 10.4319/lo.1985.30.1.0111 CrossRefGoogle Scholar
  50. Koch M, Bowes G, Ross C, Zhang XH (2013) Climate change and ocean acidification effects on seagrasses and marine macroalgae. Global Change Biol 19:103–132CrossRefGoogle Scholar
  51. Koressaar T, Remm M (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics 23:1289–1291CrossRefPubMedGoogle Scholar
  52. Kühl M, Cohen Y, Dalsgaard T, Jørgensen B, Revsbech NP (1995) The microenvironment and photosynthesis of zooxanthellae in scleractinian corals studied with microsensors for O2, pH and light. Mar Ecol Prog Ser 117:159–172CrossRefGoogle Scholar
  53. Larkum A, den Hartog C (1989) Evolution and biogeography of seagrasses. In: Larkum AWD, McComb AJ, Shepherd SA (eds) Biology of seagrasses, 1 edn. Elsevier Pub Co, Amsterdam, pp 112–156Google Scholar
  54. Larkum A, Davey P, Kuo J, Ralph P, Raven J (2017) Carbon-concentrating mechanisms in seagrasses. J Exp Bot 68:3773–3784. doi: 10.1093/jxb/erx206 CrossRefPubMedGoogle Scholar
  55. Larsson C, Lennart A, Ryberg H, Beer S (1997) Photosynthetic carbon utilization by Enteromorpha intestinalis (Chlorophyta) from a Swedish rockpool. Eur J Phycol 32:49–54. doi: 10.1080/09541449710001719365 CrossRefGoogle Scholar
  56. Lee H et al. (2016) The genome of a southern hemisphere seagrass species (Zostera muelleri). Plant Physiol 172:272–283CrossRefPubMedPubMedCentralGoogle Scholar
  57. Les DH, Cleland MA, Waycott M (1997) Phylogenetic studies in Alismatidae, II: evolution of marine angiosperms (seagrasses) and hydrophily. Syst Bot 22:443–463CrossRefGoogle Scholar
  58. Lichtenberg M, Kühl M (2015) Pronounced gradients of light, photosynthesis and O2 consumption in the tissue of the brown alga Fucus serratus. New Phytol 207:559–569. doi: 10.1111/nph.13396 CrossRefPubMedGoogle Scholar
  59. Long MH, McGlathery KJ, Zieman JC, Berg P (2008) The role of organic acid exudates in liberating phosphorus from seagrass-vegetated carbonate sediments. Limnol Oceanogr 53:2616–2626. doi: 10.4319/lo.2008.53.6.2616 CrossRefGoogle Scholar
  60. Martin V et al (2009) Recombinant plant gamma carbonic anhydrase homotrimers bind inorganic carbon. FEBS Lett 583:3425–3430. doi: 10.1016/j.febslet.2009.09.055 CrossRefPubMedGoogle Scholar
  61. Mass T, Genin A, Shavit U, Grinstein M, Tchernov D (2010) Flow enhances photosynthesis in marine benthic autotrophs by increasing the efflux of oxygen from the organism to the water. Proc Natl Acad Sci USA 107:2527–2531CrossRefPubMedPubMedCentralGoogle Scholar
  62. McLeod E et al (2011) A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ 9:552–560. doi: 10.1890/110004 CrossRefGoogle Scholar
  63. Millhouse J, Strother S (1986a) The effect of pH on the inorganic carbon source for photosynthesis in the seagrass Zostera muelleri Irmisch ex Aschers. Aquat Bot 24:199–209CrossRefGoogle Scholar
  64. Millhouse J, Strother S (1986b) Salt-stimulated bicarbonate-dependent photosynthesis in the marine angiosperm Zostera muelleri. J Exp Bot 37:965–976CrossRefGoogle Scholar
  65. Olsen JL et al (2016) The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature 530:331–335CrossRefPubMedGoogle Scholar
  66. Papenbrock J (2012) Highlights in seagrasses’ phylogeny, physiology, and metabolism: what makes them special? ISRN Bot. doi: 10.5402/2012/103892 Google Scholar
  67. Pedersen O, Colmer TD, Borum J, Zavala-Perez A, Kendrick GA (2016) Heat stress of two tropical seagrass species during low tides—impact on underwater net photosynthesis, dark respiration and diel in situ internal aeration. New Phytol 210:1207–1218. doi: 10.1111/nph.13900 CrossRefPubMedGoogle Scholar
  68. Penhale PA, Wetzel RG (1983) Structural and functional adaptations of eelgrass (Zostera marina L.) to the anaerobic sediment environment. Can J Bot 61:1421–1428CrossRefGoogle Scholar
  69. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45–e45CrossRefPubMedPubMedCentralGoogle Scholar
  70. Pierrot D, Lewis E, Wallace D (2006) MS Excel program developed for CO2 system calculations: ORNL/CDIAC-105a. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak RidgeGoogle Scholar
  71. Pregnall A, Smith R, Kursar TA, Alberte R (1984) Metabolic adaptation of Zostera marina (eelgrass) to diurnal periods of root anoxia. Mar Biol 83:141–147CrossRefGoogle Scholar
  72. Procaccini G, Olsen JL, Reusch TB (2007) Contribution of genetics and genomics to seagrass biology and conservation. J Exp Mar Biol Ecol 350:234–259CrossRefGoogle Scholar
  73. Radonić A, Thulke S, Mackay IM, Landt O, Siegert W, Nitsche A (2004) Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophys Res Commun 313:856–862CrossRefPubMedGoogle Scholar
  74. Ralph P, Durako MJ, Enriquez S, Collier C, Doblin M (2007) Impact of light limitation on seagrasses. J Exp Mar Biol Ecol 350:176–193CrossRefGoogle Scholar
  75. Raven JA (1984) Energetics and transport in aquatic plants. A.R. Liss, New YorkGoogle Scholar
  76. Raven JA (2014) Speedy small stomata? J Exp Bot 65:1415–1424. doi: 10.1093/jxb/eru032 CrossRefPubMedGoogle Scholar
  77. Raven JA, Beardall J (2016) The ins and outs of CO2. J Exp Bot 67:1–13. doi: 10.1093/jxb/erv451 CrossRefPubMedGoogle Scholar
  78. Raven JA, Farquhar GD (1990) The influence of N metabolism and organic acid synthesis on the natural abundance of isotopes of carbon in plants. New Phytol 116:505–529CrossRefGoogle Scholar
  79. Roberts DG, Moriarty DJW (1987) Lacunal gas discharge as a measure of productivity in the seagrasses Zostera capricorni, Cymodocea serrulata and Syringodium isoetifolium. Aquat Bot 28:143–160. doi: 10.1016/0304-3770(87)90036-2 CrossRefGoogle Scholar
  80. Sánchez R, Cejudo FJ (2003) Identification and expression analysis of a gene encoding a bacterial-type phosphoenolpyruvate carboxylase from Arabidopsis and rice. Plant Physiol 132:949–957CrossRefPubMedPubMedCentralGoogle Scholar
  81. Schliep M, Pernice M, Sinutok S, Bryant C, York P, Rasheed M, Ralph P (2015) Evaluation of reference genes for RT-qPCR studies in the seagrass Zostera muelleri exposed to light limitation. Sci Rep 5:17051. doi: 10.1038/srep17051 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Schwarz AM (2004) Contribution of photosynthetic gains during tidal emersion to production of Zostera capricorni in a North Island, New Zealand estuary. N Z J Mar Freshwat Res 38:809–818CrossRefGoogle Scholar
  83. Short FT et al (2011) Extinction risk assessment of the world’s seagrass species. Biol Conserv 144:1961–1971. doi: 10.1016/j.biocon.2011.04.010 CrossRefGoogle Scholar
  84. Sinutok S, Hill R, Doblin MA, Wuhrer R, Ralph PJ (2011) Warmer more acidic conditions cause decreased productivity and calcification in subtropical coral reef sediment-dwelling calcifiers. Limnol Oceanogr 56:1200–1212. doi: 10.4319/lo.2011.56.4.1200 CrossRefGoogle Scholar
  85. Sinutok S, Hill R, Doblin MA, Kühl M, Ralph PJ (2012) Microenvironmental changes support evidence of photosynthesis and calcification inhibition in Halimeda under ocean acidification and warming. Coral Reefs 31:1201–1213. doi: 10.1007/s00338-012-0952-6 CrossRefGoogle Scholar
  86. Sinutok S, Hill R, Kühl M, Doblin MA, Ralph PJ (2014) Ocean acidification and warming alter photosynthesis and calcification of the symbiont-bearing foraminifera Marginopora vertebralis. Mar Biol 161:2143–2154. doi: 10.1007/s00227-014-2494-7 CrossRefGoogle Scholar
  87. Smith RD, Dennison WC, Alberte RS (1984) Role of seagrass photosynthesis in root aerobic processes. Plant Physiol 74:1055–1058CrossRefPubMedPubMedCentralGoogle Scholar
  88. Spilling K, Titelman J, Greve TM, Kühl M (2010) Microsensor measurements of the external and internal microenvironment of Fucus vesiculosus (Phaeophyceae). J Phycol 46:1350–1355. doi: 10.1111/j.1529-8817.2010.00894.x CrossRefGoogle Scholar
  89. Staehr PA, Borum J (2011) Seasonal acclimation in metabolism reduces light requirements of eelgrass (Zostera marina). J Exp Mar Biol Ecol 407:139–146CrossRefGoogle Scholar
  90. Tripp BC, Smith K, Ferry JG (2001) Carbonic anhydrase: new insights for an ancient enzyme. J Biol Chem 276:48615–48618. doi: 10.1074/jbc.R100045200 CrossRefPubMedGoogle Scholar
  91. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40:e115–e115CrossRefPubMedPubMedCentralGoogle Scholar
  92. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:1CrossRefGoogle Scholar
  93. Vogel S (1994) Life in moving fluids: the physical biology of flow. Princeton University Press, PrincetonGoogle Scholar
  94. Voznesenskaya EV, Franceschi VR, Kiirats O, Freitag H, Edwards GE (2001) Kranz anatomy is not essential for terrestrial C4 plant photosynthesis. Nature 414:543–546CrossRefPubMedGoogle Scholar
  95. Waghmode A, Joshi G (1983) Significance of phosphoglycolate phosphatase and 3-phosphoglycerate phosphatase in photosynthetic carbon assimilation in some marine plants (Ceriops, Lumnitzera, Aegiceras, Aeluropus, Halophila). Photosynthetica 17:193–197Google Scholar
  96. Wang F, Liu R, Wu G, Lang C, Chen J, Shi C (2012) Specific downregulation of the bacterial-type PEPC gene by artificial microRNA improves salt tolerance in Arabidopsis. Plant Mol Biol Report 30:1080–1087CrossRefGoogle Scholar
  97. Webb WL, Newton M, Starr D (1974) Carbon dioxide exchange of Alnus rubra. Oecologia 17:281–291CrossRefPubMedGoogle Scholar
  98. Zeebe RE, Wolf-Gladrow DA (2001) CO2 in seawater: equilibrium, kinetics, isotopes, vol 65. Gulf Professional Publishing, HoustonGoogle Scholar
  99. Zimmerman RC, Kohrs DG, Steller DL, Alberte RS (1997) Impacts of CO2 enrichment on productivity and light requirements of eelgrass. Plant Physiol 115:599–607CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Climate Change ClusterUniversity of Technology SydneyUltimoAustralia
  2. 2.Division of Plant ScienceUniversity of Dundee at the James Hutton InstituteInvergowrie, DundeeUK

Personalised recommendations