Vyacheslav (Slava) Klimov (1945–2017): A scientist par excellence, a great human being, a friend, and a Renaissance man

  • Suleyman I. Allakhverdiev
  • Sergey K. Zharmukhamedov
  • Margarita V. Rodionova
  • Vladimir A. Shuvalov
  • Charles Dismukes
  • Jian-Ren Shen
  • James Barber
  • Göran Samuelsson
  • Govindjee
Tribute
  • 93 Downloads

Abstract

Vyacheslav Vasilevich (V.V.) Klimov (or Slava, as most of us called him) was born on January 12, 1945 and passed away on May 9, 2017. He began his scientific career at the Bach Institute of Biochemistry of the USSR Academy of Sciences (Akademy Nauk (AN) SSSR), Moscow, Russia, and then, he was associated with the Institute of Photosynthesis, Pushchino, Moscow Region, for about 50 years. He worked in the field of biochemistry and biophysics of photosynthesis. He is known for his studies on the molecular organization of photosystem II (PSII). He was an eminent scientist in the field of photobiology, a well-respected professor, and, above all, an outstanding researcher. Further, he was one of the founding members of the Institute of Photosynthesis in Pushchino, Russia. To most, Slava Klimov was a great human being. He was one of the pioneers of research on the understanding of the mechanism of light energy conversion and of water oxidation in photosynthesis. Slava had many collaborations all over the world, and he is (and will be) very much missed by the scientific community and friends in Russia as well as around the World. We present here a brief biography and some comments on his research in photosynthesis. We remember him as a friendly and enthusiastic person who had an unflagging curiosity and energy to conduct outstanding research in many aspects of photosynthesis, especially that related to PSII.

Keywords

Biochemistry and biophysics of photosynthesis Pheophytin P680 Bicarbonate Carbonic anhydrase Photosystem II 

Supplementary material

11120_2017_440_MOESM1_ESM.pdf (2.3 mb)
Supplementary material 1 (PDF 2331 KB)

References

  1. Abramowicz DA, Dismukes GC (1984a) Manganese proteins isolated from spinach thylakoid membranes and their role in O2 evolution. 1. A 56 kilodalton manganese-containing protein, a probable component of the coupling factor enzyme. Biochim Biophys Acta 765(3):309–317CrossRefPubMedGoogle Scholar
  2. Abramowicz DA, Dismukes GC (1984b) Manganese proteins isolated from spinach thylakoid membranes and their role in O2 evolution. 2. A binuclear manganese-containing 34 kilodalton protein, a probable component of the water dehydrogenase enzyme. Biochim Biophys Acta 765(3):318–328CrossRefPubMedGoogle Scholar
  3. Allakhverdiev SI, Klevanik AV, Klimov VV, Shuvalov VA, Krasnovsky AA (1983) Estimation of the number of manganese atoms functioning in the donor side of photosystem II. Biofizika 28:5–8 (in Russian)PubMedGoogle Scholar
  4. Allakhverdiev SI, Shafiev MA, Klimov VV (1986) Effect of reversible extraction of manganese on photooxidation of chlorophyll P680 in photosystem II preparations. Photobiochem Photobiophys 1 2:61–65Google Scholar
  5. Allakhverdiev SI, Setlikova E, Klimov VV, Setlik I (1987) In photoinhibited photosystem II particles pheophytin photoreduction remains unimpaired. FEBS Lett 226:186–190CrossRefPubMedGoogle Scholar
  6. Allakhverdiev SI,Kulikov AV, Klimov VV, Bogatyrenko VR, Likhtenstein GI (1989a) Determination of the immersion depth of chlorophyll P680, pheophytin and secondary electron donor Z in pea subchloroplast preparations of the photosystem II. Biofizika 34:434–438 (in Russian)PubMedGoogle Scholar
  7. Allakhverdiev SI, Zharmukhamedov SK, Klimov VV, Vasilev SA, Korvatovsky BN, Pashchenko VZ (1989b) Effect of dinoseb and other phenolic compounds on fluorescence decay kinetics of photosystem II chlorophyll in higher plants. Biol Membr 6:1147–1153 (in Russian)Google Scholar
  8. Allakhverdiev SI, Komenda J, Feyziev YM, Nedbal L, Klimov VV (1993) Photoinactivation of isolated D1/D2/cytochrome b 559 complex under aerobic and anaerobic conditions. Photosynthetica 28:281–288Google Scholar
  9. Allakhverdiev SI, Klimov VV, Carpentier R (1994a) Variable thermal emission and chlorophyll fluorescence in photosystem II particles. Proc Natl Acad Sci USA 91(1):281–285CrossRefPubMedPubMedCentralGoogle Scholar
  10. Allakhverdiev SI, Karacan MS, Somer G, Karacan N, Khan EM, Rane SY, Padhye S, Klimov VV, Renger G (1994b) Reconstitution of the water-oxidizing complex in manganese-depleted photosystem II complexes by using synthetic binuclear manganese complexes. BioChemistry 33(40):12210–12214CrossRefPubMedGoogle Scholar
  11. Allakhverdiev SI, Klimov VV, Carpentier R (1997a) Evidence for the involvement of cyclic electron transport in the protection of photosystem II against photoinhibition: influence of a new phenolic compound. BioChemistry 36(14):4149–4154CrossRefPubMedGoogle Scholar
  12. Allakhverdiev SI, Yruela I, Picorel R, Klimov V (1997b) Bicarbonate is an essential constituent of the water-oxidizing complex of photosystem II. Proc Natl Acad Sci USA 94:5050–5054CrossRefPubMedPubMedCentralGoogle Scholar
  13. Allakhverdiev SI, Tomo T, Shimada Y, Kindo H, Nagao R, Klimov VV, Mimuro M (2010) Redox potential of pheophytin a in photosystem II of two cyanobacteria having the different special pair chlorophylls. Proc Natl Acad Sci USA 107(8):3924–3929CrossRefPubMedPubMedCentralGoogle Scholar
  14. Allakhverdiev SI, Tsuchiya T, Watabe K, Kojima A, Los DA, Tomo T, Klimov VV, Mimuro M (2011) Redox potentials of primary electron acceptor quinone molecule (QA) and conserved energetics of photosystem II in cyanobacteria with chlorophyll a and chlorophyll d. Proc Natl Acad Sci USA 108(19):8054–8058CrossRefPubMedPubMedCentralGoogle Scholar
  15. Ananyev GM, Wydrzynski T, Renger G, Klimov VV (1992) Transient peroxide formation by the manganeze-containing, redox-active donor side of PS II upon inhibition of O2 evolution with lauroylcholine chloride. Biochim Biophys Acta 1100:303–311CrossRefGoogle Scholar
  16. Ananyev G, Nguyen T, Putnam-Evans C, Dismukes GC (2005) Mutagenesis of CP43-arginine-357 to serine reveals new evidence for (bi)carbonate functioning in the water oxidizing complex of photosystem II. Photochem Photobiol Sci 4(12):991–998CrossRefPubMedGoogle Scholar
  17. Baranov SV, Ananyev GM, Klimov VV, Dismukes GC (2000) Bicarbonate accelerates the kinetics of assembly of the inorganic core of the photosynthetic water oxidizing complex in Mn-depleted photosystem II membrane fragments. BioChemistry 39:6060–6065CrossRefPubMedGoogle Scholar
  18. Baranov S, Tyryshkin A, Katz D, Dismukes GC, Ananyev G, Klimov V (2004) Bicarbonate is a native cofactor for assembly of the manganese cluster of the photosynthetic water oxidizing complex: II. Kinetics of reconstitution of O2 evolution by photoactivation. BioChemistry 43:2070–2079CrossRefPubMedGoogle Scholar
  19. Bianchetti M, Zheleva D, Deak Z, Zharmuhamedov SK, Klimov VV, Nugent JHA, Vass I, Barber J (1998) Comparison of the functional properties of the monomeric and dimeric forms of the isolated CP47-RC complex. J Biol Chem 273:16128–16133CrossRefPubMedGoogle Scholar
  20. Boichenko VA, Klimov VV, Mayes SR, Barber J (1993) Characterisation of light-induced oxygen gas exchange from the IC2 deletion mutant of Synechocystis sp. PCC 6803 lacking the photosystem II 33 kDa extrinsic protein. Z Naturforsch 48C:224–233Google Scholar
  21. Brinkert K, De Causmaecker S, Krieger-Liszkay A, Fantuzzi A, Rutherford AW (2016) Bicarbonate-induced redox tuning in Photosystem II for regulation and protection. Proc Natl Acad Sci USA 113(43):12144–12149CrossRefPubMedPubMedCentralGoogle Scholar
  22. Damoder R, Klimov VV, Dismukes GC (1986) The effect of Cl depletion and Xreconstitution on the oxygen-evolution rate, the yield of the multiline manganese electron paramagnetic resonance signal and electron paramagnetic resonance signal lI in the isolated Photosystem II complex. Biochim Biophys Acta 848(3):378–391CrossRefPubMedGoogle Scholar
  23. Dasgupta J, Ananyev GM, Dismukes GC (2008) Photoassembly of the water-oxidizing complex in photosystem II. Coord Chem Rev 252(3–4):347–360CrossRefPubMedPubMedCentralGoogle Scholar
  24. Dismukes G, Klimov V, Baranov SV, Kozlov YN, Das Gupta JA, Tyryshkin A (2001) The origin of atmospheric oxygen on earth: the innovation of oxygenic photosynthesis. Proc Nat Acad Sci USA 98(5):2170–2175CrossRefPubMedPubMedCentralGoogle Scholar
  25. Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303(5665):1831–1838CrossRefPubMedGoogle Scholar
  26. Govindjee, van Rensen JJS (1978) Bicarbonate effects on the electron flow in isolated broken chloroplasts. Biochim Biophys Acta 505:183–213Google Scholar
  27. Govindjee, Fork D, Wydrzynski T, Spector M, Winget GD (1980) Photosystem II reactions in liposomes reconstituted with cholate-extracted thylakoids and a manganese-containing protein. Photobiochem Photobiophys 1:347–351Google Scholar
  28. Govindjee, Weger HG, Turpin DH, van Rensen JJS, Devos OJ, Snel JFH (1991) Formate releases carbon dioxide/bicarbonate from thylakoid membranes - measurements by mass spectroscopy and infrared gas analyzer. Naturwissenschaften 78(4):168–170CrossRefGoogle Scholar
  29. Govindjee, Xu C, van Rensen JJS (1997) On the requirement of bound bicarbonate for photosystem II activity. Z Naturforsch 52(1–2):24–32Google Scholar
  30. Hillier W, McConnell I, Badger MR, Boussac A, Klimov VV, Dismukes GC, Wydrzynski T (2006) Quantitative assessment of intrinsic carbonic anhydrase activity and the capacity for bicarbonate oxidation in photosystem II. BioChemistry 45(7):2094–2102CrossRefPubMedGoogle Scholar
  31. Hulsebosch RJ, Allakhverdiev SI, Klimov VV, Picorel R, Hoff A (1998) Effect of bicarbonate on the S2 multiline EPR signal of the oxygen-evolving complex in photosystem II membrane fragments. FEBS Lett 424:146–148CrossRefPubMedGoogle Scholar
  32. Karacan MS, Yakan C, Yakan M, Karacan N, Zharmukhamedov SK, Shitov A, Los DA, Klimov VV, Allakhverdiev SI (2012) Quantitative structure-activity relationship analysis of perfluoroiso-propyldinitrobenzene derivatives known as photosystem II electron transfer inhibitors. Biochim Biophys Acta 1817(8):1229–1236CrossRefPubMedGoogle Scholar
  33. Karacan MS, Zharmukhamedov SK, Mamaş S, Kupriyanova EV, Shitov AV, Klimov VV, Özbek N, Özmen Ü, Gündüzalp A, Schmitt FJ, Karacan N, Friedrich T, Los DA, Carpentier R, Allakhverdiev SI (2014) Screening of novel chemical compounds as possible inhibitors of carbonic anhydrase and photosynthetic activity of photosystem II. J Photochem Photobiol B137:156–167CrossRefGoogle Scholar
  34. Karacan MS, Rodionova MV, Tunç T, Venedik KB, Mamaş S, Shitov AV, Zharmukhamedov SK, Klimov VV, Karacan N, Allakhverdiev SI (2016) Characterization of nineteen antimony (III) complexes as potent inhibitors of photosystem II, carbonic anhydrase, and glutathione reductase. Photosynth Res 130(1–3):167–182CrossRefPubMedGoogle Scholar
  35. Karapetyan NV, Govindjee (2014) Alexander Abramovich Krasnovsky (1913–1993): 100th birth anniversary in Moscow, Russia. Photosynth Res 120:347–353CrossRefPubMedGoogle Scholar
  36. Khorobrykh A, Dasgupta J, Kolling DRJ, Terentyev V, Klimov VV, Dismukes GC (2013) Evolutionary origins of the photosynthetic water oxidation cluster: bicarbonate permits Mn2+ photo-oxidation by anoxygenic bacterial reaction centers. Chem Bio Chem 14(14):1725–1731CrossRefPubMedGoogle Scholar
  37. Klevanik AV, Klimov VV, Shuvalov VA, Krasnovsky AA (1977) Reduction of pheophytin in the light reaction of photosystem II of higher plant. Dokl Akad Nauk SSSR 236:241–244 (in Russian)Google Scholar
  38. Klimov VV, Baranov SV (2001) Bicarbonate requirement for the water-oxidizing complex of photosystem II. Biochim Biophys Acta 1503(1–2):187–196CrossRefPubMedGoogle Scholar
  39. Klimov VV, Krasnovsky AA (1981) Pheophytin as the primary electron acceptor in photosystem 2 reaction centres. Photosynthetica 15:592–609Google Scholar
  40. Klimov VV, Klevanik AV, Shuvalov VA, Krasnovsky AA (1977) Reduction of pheophytin in the primary light reaction of photosystem II. FEBS Lett 82:183–186CrossRefPubMedGoogle Scholar
  41. Klimov VV, Allakhverdiev SI, Pashchenko VZ (1978) Measurement of the activation energy and lifetime of fluorescence of photosystem II chlorophyll. Dokl Akad Nauk SSSR 242:1204–1207 (in Russian)Google Scholar
  42. Klimov VV, Allakhverdiev SI, Demeter S, Krasnovsky AA (1979a) Photoreduction of pheophytin in Photosystem 2 of chloroplasts with respect to redox potential of the medium. Dokl Akad Nauk SSSR 249:227–230 (in Russian)Google Scholar
  43. Klimov VV, Allakhverdiev SI, Krasnovsky AA (1979b) EPR signal at photoreduction of pheophytin in Photosystem 2 reaction centres of chloroplasts. Dokl Akad Nauk SSSR 249:485–488 (in Russian)Google Scholar
  44. Klimov VV, Allakhverdiev SI, Shutilova NI, Krasnovsky AA (1980a) Investigation of pheophytin photoreduction and chlorophyll P680 photooxidation with preparations of photosystem II from pea and Chlamydomonas reinhardii chloroplasts. Fiziologiya Rastenii (Soviet Plant Physiology) 27:315–326 (in Russian)Google Scholar
  45. Klimov VV, Dolan E, Ke B (1980b) EPR properties of an intermediary electron acceptor (Pheophytin) in PS II reaction centers at cryogenic temperatures. FEBS Lett 112:97–100CrossRefGoogle Scholar
  46. Klimov VV, Dolan E, Shaw E, Ke B (1980c) Interaction between the intermediary electron acceptor (Pheophytin) and a possible plastoquinone-iron complex in photosystem II reaction centers. Proc Natl Acad Sci USA 77:7227–7231CrossRefPubMedPubMedCentralGoogle Scholar
  47. Klimov VV, Allakhverdiev SI, Shuvalov VA, Krasnovsky AA (1982) Effect of extraction and readdition of manganese on light reactions of photosystem II preparations. FEBS Lett 148:307–312CrossRefPubMedGoogle Scholar
  48. Klimov VV, Allakhverdiev SI, Shafiev MA, Demeter S (1985) Effect of complete extraction and re-addition of manganese on thermoluminescence of pea photosystem II preparations. Biochim Biophys Acta 809:414–420CrossRefPubMedGoogle Scholar
  49. Klimov VV, Allakhverdiev SI, Ladygin VG (1986) Photoreduction of pheophytin in photosystem II of the whole cells of green algae and cyanobacteria. Photosynth Res 10:355–361CrossRefPubMedGoogle Scholar
  50. Klimov VV, Shafiev MA, Allakhverdiev SI (1990) Photoinactivation of the reactivation capacity of photosystem II in pea subchloroplast particles after a complete removal of manganese. Photosynth Res 1:59–65CrossRefGoogle Scholar
  51. Klimov VV, Zharmukhamedov SK, Allakhverdiev SI, Kolobanova LP, Baskakov YA (1992) New phenolic inhibitors of electron transfer in photosystem II. Biol Membr 9:565–575 (in Russian)Google Scholar
  52. Klimov VV, Zharmukhamedov SK, Allakhverdiev SI, Kolobanova LP, Baskakov YA (1993a) New group of inhibitors of electron transfer in photosystem II of plants. Chemical structure and efficiency of inhibition. Biol Membr 10:565–570 (in Russian)Google Scholar
  53. Klimov VV, Ananyev GM, Zastryzhnaya OM, Widrzynski T, Renger G (1993b) Photoproduction of hydrogen peroxide in photosystem II membrane fragments: a comparison of four signals. Photosynth Res 38:409–416CrossRefPubMedGoogle Scholar
  54. Klimov VV, Allakhverdiev SI, Feyziev YM, Baranov SV (1995a) Bicarbonate requirement for the donor side of photosystem II. FEBS Lett 363:251–255CrossRefPubMedGoogle Scholar
  55. Klimov VV, Allakhverdiev SI, Baranov SB, Feyziev YM (1995b) Effects of bicarbonate and formate on the donor side of photosystem II. Photosynth Res 46:219–225CrossRefPubMedGoogle Scholar
  56. Klimov VV, Zharmukhamedov SK, De Las Rivas J, Barber J (1995c) Effect of PSII inhibitor K-15 on photochemical reactions of the isolated D1/D2 cytochrome b559 complex. Photosynth Res 44:6 7–74CrossRefGoogle Scholar
  57. Klimov VV, Baranov SV, Allakhverdiev SI (1997a) Bicarbonate protects the donor side of photosystem II against photoinhibition and thermoinactivation. FEBS Lett 418:243–246CrossRefPubMedGoogle Scholar
  58. Klimov VV, Hulsebosch B, Allakhverdiev SI, Wincencjusz H, van Gorkom HJ, Hoff A (1997b) Bicarbonate may be required for ligation of manganese in the oxygen-evolving complex of photosystem II. BioChemistry 36:16277–16281CrossRefPubMedGoogle Scholar
  59. Klimov VV, Allakhverdiev SI, Nishiyama Y, Khorobrykh AA, Murata N (2003) Stabilization of the oxygen-evolving complex of photosystem II by bicarbonate and glycinebetaine in thylakoid and subthylakoid preparations. Funct Plant Biol 30(7):797–803CrossRefGoogle Scholar
  60. Koroidov S, Shevela D, Shutova T, Samuelsson G, Messinger J (2014) Mobile hydrogen carbonate acts as proton acceptor in photosynthetic water oxidation. Proc Natl Acad Sci USA 111(17):6299–6304CrossRefPubMedPubMedCentralGoogle Scholar
  61. Kozlov YN, Zharmukhamedov SK, Tikhonov KG, Dasgupta J, Kazakova AA, Dismukes GC, Klimov VV (2004) Oxidation potentials and electron donation to photosystem II of manganese complexes containing bicarbonate and carboxylate ligands. Phys Chem Chem Phys 6:4905–4911CrossRefGoogle Scholar
  62. Kulikov AV, Bogatyrenko VR, Likhtenstein GI, Allakhverdiev SI, Klimov VV, Shuvalov VA, Krasnovsky AA (1983) Magnetic interaction of manganese with pheophytin anion-radical and chlorophyll cation-radical in reaction centers of photosystem II. Biofizika 28:357–363 (in Russian)PubMedGoogle Scholar
  63. Lu YK, Stemler AJ (2002) Extrinsic photosystem II carbonic anhydrase in maize mesophyll chloroplast. Plant Physiol 128:643–646CrossRefPubMedPubMedCentralGoogle Scholar
  64. Lu YK. Theg SM, Stemler AJ (2005) Carbonic anhydrase activity of photosystem II 33c kkDa protein from pea. Plant Cell Physiol 46:1944–1953CrossRefPubMedGoogle Scholar
  65. Pobeguts OV, Smolova TN, Timoshevsky DS, Klimov VV (2010) Interaction of bicarbonate with the manganese-stabilizing protein of photosystem II. J Photochem Photobiol B 100(1):30–37Google Scholar
  66. Rodionova MV, Zharmukhamedov SK, Karacan MS, Venedik KB, Shitov AV, Tunc T, Mamas S, Kreslavski VD, Karacan N, Klimov VV, Allakhverdiev SI (2017) Evaluation of new Cu(II) complexes as a novel class of inhibitors against plant carbonic anhydrase, glutathione reductase and photosynthetic activity in photosystem II. Photosynth Res 133:139–153CrossRefPubMedGoogle Scholar
  67. Savchenko T, Zastrijnaja O, Klimov V (2014) Oxylipins and plant abiotic stress resistance. BioChemistry 79(4):460–477Google Scholar
  68. Savchenko T, Yanykin D, Khorobrykh A, Terentyev V, Klimov V, Dehesh K (2017) The hydroperoxide lyase branch of the oxylipin pathway protects against photoinhibition of photosynthesis. Planta 245(6):1179–1192CrossRefPubMedGoogle Scholar
  69. Setlik I, Allakhverdiev SI, Nedbal L, Setlikova E, Klimov VV (1990) Three types of photosystem 2 photoinactivation. I. Damaging processes on the acceptor side. Photosynth Res 23:39–48CrossRefPubMedGoogle Scholar
  70. Shevela DN, Khorobrykh AA, Klimov VV (2006) Effect of bicarbonate on the water-oxidizing complex of photosystem II in the super-reduced S-states. Biochim Biophys Acta 1757(4):253–261CrossRefPubMedGoogle Scholar
  71. Shevela D, Klimov V, Messinger J (2007) Interactions of photosystem II with bicarbonate, formate and acetate. Photosynth Res 94(2–3):247–264CrossRefPubMedGoogle Scholar
  72. Shevela D, Klimov V, Messinger J (2008a) Formate-induced release of carbon dioxide/hydrogencarbonate from photosystem II. In: Allen JF, Gantt E, Golbeck JH, Osmond B (eds) Photosynthesis. Energy from the Sun. Springer, Glasgow, pp 497–501Google Scholar
  73. Shevela D, Su JH, Klimov V, Messinger J (2008b) Hydrogencarbonate is not a tightly bound constituent of the water-oxidizing complex in photosystem II. Biochim Biophys Acta 1777(6):532–539CrossRefPubMedGoogle Scholar
  74. Shevela D, Eaton-Rye JJ, Shen J-R, Govindjee (2012) Photosystem II and unique role of bicarbonate: a historical perspective. Biochim Biophys Acta 1817:1134–1151CrossRefPubMedGoogle Scholar
  75. Shitov AV, Pobeguts OV, Smolova TN, Allakhverdiev SI, Klimov VV (2009) Manganese-dependent carboanhydrase activity of photosystem II proteins. BioChemistry 74(5):509–517PubMedGoogle Scholar
  76. Shitov AV, Zharmukhamedov SK, Shutova TV, Allakhverdiev SI, Samuelsson G, Klimov VV (2011) A carbonic anhydrase inhibitor induces bicarbonate-reversible suppression of electron transfer in pea photosystem 2 membrane fragments. J Photochem Photobiol B 104(1–2):366–371CrossRefPubMedGoogle Scholar
  77. Shutova T, Kenneweg H, Buchta J, Nikitina J, Terentyev V, Chernyshov S, Andersson B, Allakhverdiev SI, Klimov VV, Dau H, Junge W, Samuelsson G (2008) The photosystem II-associated Cah3 in Chlamydomonas enhances the O2 evolution rate by proton removal. EMBO J 27(5):782–791CrossRefPubMedPubMedCentralGoogle Scholar
  78. Spector M, Winget GD (1980) Purification of a manganese-containing protein involved in photosynthetic oxygen evolution and its use in reconstituting an active membrane. Proc Natl Acad Sci USA 77(2):957–959CrossRefPubMedPubMedCentralGoogle Scholar
  79. Stemler A (1982) The functional role of bicarbonate in photosynthetic light reaction II. In: Govindjee (ed) Photosynthesis. Vol. II: development, carbon metabolism and plant productivity. Academic Press, New York, pp 513–540Google Scholar
  80. Stemler AJ (1997) The case for thylakoid carbonic anhydrase. Physiol Plant 99:348–353Google Scholar
  81. Stemler AJ (1998) Bicarbonate and photosynthetic oxygen evolution: an unwelcome legacy of Otto Warburg. Indian J Exp Biol 36:841–848Google Scholar
  82. Stemler AJ (2002) The bicarbonate effect, oxygen evolution, and the shadow of Otto Warburg. Photosynth Res 73(1–3):177–183CrossRefPubMedGoogle Scholar
  83. Stemler A, Govindjee (1973) Bicarbonate ion as a critical factor in photosynthetic oxygen evolution. Plant Physiol 52:119–123CrossRefPubMedPubMedCentralGoogle Scholar
  84. Stemler A, Babcock GT, Govindjee (1974) The effect of bicarbonate on photosynthetic oxygen evolution in flashing light in chloroplast fragments. Proc Nat Acad Sci USA 71:4679–4683CrossRefPubMedPubMedCentralGoogle Scholar
  85. Tikhonov K, Khristin M, Klimov V, Sundireva M, Kreslavski V, Sidorov V, Tsidendambayev V, Savchenko T (2017a) Structural and functional characteristics of photosynthetic apparatus of chlorophyll-containing grape vine tissue. Russ J Plant Physiol 64(1):73–82CrossRefGoogle Scholar
  86. Tikhonov K, Shevela D, Klimov VV, Messinger J (2017b) Quantification of bound bicarbonate in Photosystem II. Photosynthetica (submitted)Google Scholar
  87. Van Rensen JJS, Klimov VV (2005) Bicarbonate interactions. In: Wydrzynski T, Satoh K (eds) Photosystem II: the light-driven water: plastoquinone oxidoreductase. Vol 22: advances in photosynthesis and respiration. Springer, Dordrecht, pp 329–346Google Scholar
  88. Van Rensen JJS, Xu C, Govindjee (1999) Role of bicarbonate in the photosystem II, the water-plastoquinone oxido-reductase of plant photosynthesis. Physiol Plant 105:585–592CrossRefGoogle Scholar
  89. Vermaas WFJ, Govindjee (1982) Bicarbonate or CO2 as a requirement for efficient electron transport on the acceptor side of Photosystem II. In: Govindjee (ed) Photosynthesis. Vol II: development, carbon metabolism and plant productivity. Academic Press, New York, pp 541—558Google Scholar
  90. Villarejo A, Shutova T, Moskvin O, Forssén M, Klimov VV, Samuelsson G (2002) A photosystem II-associated carbonic anhydrase regulates the efficiency of photosynthetic oxygen evolution. EMBO J 21(8):1930–1938CrossRefPubMedPubMedCentralGoogle Scholar
  91. Wincencjusz H, Allakhverdiev SI, Klimov VV, van Gorkom HJ (1996) Bicarbonate-reversible formate inhibition at the donor side of photosystem II. Biochim Biophys Acta 1273:1–3CrossRefGoogle Scholar
  92. Wydrzynski T, Govindjee (1975) New site of bicarbonate effect in photosystem II of photosynthesis: evidence from chlorophyll fluorescence transients in spinach-chloroplasts. Biochim Biophys Acta 387(2):403–408CrossRefPubMedGoogle Scholar
  93. Xiong J, Subramaniam S, Govindjee (1998) A knowledge-based three dimensional model of the Photosystem II reaction center of Chlamydomonas reinhardtii. Photosynth Res 56:229–254CrossRefGoogle Scholar
  94. Yruela I, Allakhverdiev SI, Ibara JV, Klimov VV (1998) Bicarbonate binding to the water-oxidizing complex in the photosystem II. A Fourier transform infrared spectroscopy study. FEBS Lett 425:396–400CrossRefPubMedGoogle Scholar
  95. Yurina NP, Popov VO, Krasnovsky AA Jr, Govindjee (2017) Remembering Navasard V. Karapetyan (1936–2015). Photosynth Res 132(3):221–226CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Suleyman I. Allakhverdiev
    • 1
    • 2
    • 3
    • 4
  • Sergey K. Zharmukhamedov
    • 1
    • 2
  • Margarita V. Rodionova
    • 2
  • Vladimir A. Shuvalov
    • 1
    • 4
  • Charles Dismukes
    • 5
  • Jian-Ren Shen
    • 6
  • James Barber
    • 7
  • Göran Samuelsson
    • 8
  • Govindjee
    • 9
  1. 1.Institute of Basic Biological ProblemsRussian Academy of SciencesPushchino, Moscow RegionRussia
  2. 2.Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia
  3. 3.Bionanotechnology Laboratory, Institute of Molecular Biology and BiotechnologyAzerbaijan National Academy of SciencesBakuAzerbaijan
  4. 4.Faculty of BiologyM.V. Lomonosov Moscow State UniversityMoscowRussia
  5. 5.Department of Chemistry and Chemical BiologyRutgers UniversityPiscatawayUSA
  6. 6.Research Institute for Interdisciplinary Science, Graduate School of Natural Science and TechnologyOkayama UniversityOkayamaJapan
  7. 7.Department of Life SciencesImperial CollegeLondonUK
  8. 8.Department of Plant Physiology, Umeå Plant Science CentreUmeå UniversityUmeåSweden
  9. 9.Department of Biochemistry, Department of Plant Biology, and Center of Biophysics & Quantitative BiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations