Photosynthesis Research

, Volume 134, Issue 2, pp 175–182 | Cite as

Chlorophyll a with a farnesyl tail in thermophilic cyanobacteria

  • Jessica M. Wiwczar
  • Amy M. LaFountain
  • Jimin Wang
  • Harry A. Frank
  • Gary W. Brudvig
Original Article


Photosystem II (PSII) of oxygenic photosynthetic organisms normally contains exclusively chlorophyll a (Chl a) as its major light-harvesting pigment. Chl a canonically consists of the chlorin headgroup with a 20-carbon, 4-isoprene unit, phytyl tail. We have examined the 1.9 Å crystal structure of PSII from thermophilic cyanobacteria reported by Shen and coworkers in 2012 (PDB accession of 3ARC/3WU2). A newly refined electron density map from this structure, presented here, reveals that some assignments of the cofactors may be different from those modeled in the 3ARC/3WU2 structure, including a specific Chl a that appears to have a truncated tail by one isoprene unit. We provide experimental evidence using high-performance liquid chromatography and mass spectrometry for a small population of Chl a esterified to a 15-carbon farnesyl tail in PSII of thermophilic cyanobacteria.


Chlorophyll a CP43 Photosystem II Thermosynechococcus elongatus X-ray crystal structure 



This work was funded by the Department of Energy Grant DE-FG02-05ER15646 (G.W.B.). Work in the laboratory of H.A.F. was supported by grants from the National Science Foundation (MCB-1243565) and the University of Connecticut Research Foundation. Crystallographic analysis of this study was in part funded by National Institutes of Health Program Grant P01 GM022779.

Supplementary material

11120_2017_425_MOESM1_ESM.pdf (239 kb)
Supplementary material 1 (PDF 238 KB)


  1. Airs RL, Keely BJ (2003) A high resolution study of the chlorophyll and bacteriochlorophyll pigment distributions in a calcite/gypsum microbial mat. Org Geochem 34:539–551. doi: 10.1016/S0146-6380(02)00244-9 CrossRefGoogle Scholar
  2. Björn LO, Papageorgiou GC, Blankenship RE, Govindjee (2009) A viewpoint: why chlorophyll a? Photosynth Res 99:85–98. doi: 10.1007/s11120-008-9395-x CrossRefPubMedGoogle Scholar
  3. Chew AGM, Bryant DA (2007) Chlorophyll biosynthesis in bacteria: the origins of structural and functional diversity. Annu Rev Microbiol 61:113–129. doi: 10.1146/annurev.micro.61.080706.093242 CrossRefPubMedGoogle Scholar
  4. Ferlez B, Dong W, Siavashi R et al (2015) The effect of bacteriochlorophyll g oxidation on energy and electron transfer in reaction centers from Heliobacterium modesticaldum. J Phys Chem B 119:13714–13725. doi: 10.1021/acs.jpcb.5b03339 CrossRefPubMedGoogle Scholar
  5. Guskov A, Kern J, Gabdulkhakov A et al (2009) Cyanobacterial photosystem II at 2.9-Å resolution and the role of quinones, lipids, channels and chloride. Nat Struct Mol Biol 16:334–342. doi: 10.1038/nsmb.1559 CrossRefPubMedGoogle Scholar
  6. Halfmann C et al (2014) Genetically engineering cyanobacteria to convert CO2, water, and light into the long-chain hydrocarbon farnesene. Appl Microbiol Biotechnol 98:9869–9877. doi: 10.1007/s00253-014-6118-4 CrossRefPubMedGoogle Scholar
  7. Hellier P et al (2013) Combustion and emissions characterization of terpenes with a view to their biological production in cyanobacteria. Fuel 111:670–688. doi: 10.1016/j.fuel.2013.04.042 CrossRefGoogle Scholar
  8. Iwai M, Maoka T, Ikeuchi M, Takaichi S (2008) 2,2′-beta-Hydroxylase (CrtG) is involved in carotenogenesis of both nostoxanthin and 2-hydroxymyxol 2′-fucoside in Thermosynechococcus elongatus strain BP-1. Plant Cell Physiol 49:1678–1687. doi: 10.1093/pcp/pcn142 CrossRefPubMedGoogle Scholar
  9. Kamiya N, Shen J-R (2003) Crystal structure of oxygen-evolving Photosystem II from Thermosynechococcus vulcanus at 3.7 Å resolution. Proc Natl Acad Sci USA 100:98–103. doi: 10.1073/pnas.0135651100 CrossRefPubMedGoogle Scholar
  10. Koua FHM, Umena Y, Kawakami K, Shen J-R (2013) Structure of Sr-substituted photosystem II at 2.1 A resolution and its implications in the mechanism of water oxidation. Proc Natl Acad Sci 110(10):3889–3894CrossRefGoogle Scholar
  11. Loll B, Kern J, Saenger W et al (2005a) Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438:1040–1044. doi: 10.1038/nature04224 CrossRefPubMedGoogle Scholar
  12. Loll B, Kern J, Zouni A et al (2005b) The antenna system of photosystem II from Thermosynechococcus elongatus at 3.2 Å resolution. Photosynth Res 86:175–184. doi: 10.1007/s11120-005-4117-0 CrossRefPubMedGoogle Scholar
  13. Luber S et al (2011) S1-state model of the O2-evolving complex of photosystem II. Biochemistry 50:6308–6311CrossRefPubMedPubMedCentralGoogle Scholar
  14. Masuda T, Fujita Y (2008) Regulation and evolution of chlorophyll metabolism. Photochem Photobiol Sci 7:1131–1149. doi: 10.1039/B807210H CrossRefPubMedGoogle Scholar
  15. McEvoy JP, Brudvig GW (2006) Water-splitting chemistry of photosystem II. Chem Rev 106:4455–4483. doi: 10.1021/cr0204294 CrossRefPubMedGoogle Scholar
  16. Molińska E, Klimczak U, Komaszyło J et al (2015) Double bond stereochemistry influences the susceptibility of short-chain isoprenoids and polyprenols to decomposition by thermo-oxidation. Lipids 50:359–370. doi: 10.1007/s11745-015-3998-8 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Müh F, Renger T, Zouni A (2008) Crystal structure of cyanobacterial photosystem II at 3.0 Å resolution: a closer look at the antenna system and the small membrane-intrinsic subunits. Plant Physiol Biochem 46:238–264. doi: 10.1016/j.plaphy.2008.01.003 CrossRefPubMedGoogle Scholar
  18. Müh F, Plöckinger M, Ortmayer H, Schmidt am Busch M, Lindorfer D, Adolphs J, Renger T (2015) The quest for energy traps in the CP43 antenna of photosystem II. J Photochem Photobiol B 152:286–300. doi: 10.1016/j.jphotobiol.2015.05.023 CrossRefPubMedGoogle Scholar
  19. Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Cryst D 53:240–255.CrossRefGoogle Scholar
  20. Nakamura A, Watanabe T (1998) HPLC determination of photosynthetic pigments during greening of etiolated barley leaves. Evidence for the biosynthesis of chlorophyll a’. FEBS Lett 426:201–204. doi: 10.1016/S0014-5793(98)00344-5 CrossRefPubMedGoogle Scholar
  21. Nakamura A, Tanaka S, Watanabe T (2001) Normal-phase HPLC separation of possible biosynthetic intermediates of pheophytin a and chlorophyll a’. Anal Sci 17:509–513. doi: 10.2116/analsci.17.509 CrossRefPubMedGoogle Scholar
  22. Nakamura A, Akai M, Yoshida E, Taki T (2003) Reversed-phase HPLC determination of chlorophyll a′ and phylloquinone in Photosystem I of oxygenic photosynthetic organisms. Eur J Biochem 270:2446–2458. doi: 10.1046/j.1432-1033.2003.03616.x CrossRefPubMedGoogle Scholar
  23. Ohto C, Ishida C, Nakane H et al (1999) A thermophilic cyanobacterium Synechococcus elongatus has three different Class I prenyltransferase genes. Plant Mol Biol 40:307–321. doi: 10.1023/A:1006295705142 CrossRefPubMedGoogle Scholar
  24. Read, RJ (2001) Pushing the boundaries of molecular replacement with maximum likelihood. Acta Cryst D 57:1373–1382.CrossRefGoogle Scholar
  25. Rüdiger W, Benz J, Guthoff C (1980) Detection and partial characterization of activity of chlorophyll synthetase in etioplast membranes. Eur J Biochem 109:193–200. doi: 10.1111/j.1432-1033.1980.tb04784.x CrossRefPubMedGoogle Scholar
  26. Shen J-R, Kawakami K, Koike H (2010) Purification and crystallization of oxygen-evolving photosystem II core complex from thermophilic cyanobacteria. In: Carpentier R (ed) Photosynthesis research protocols, methods in molecular biology, vol 684. Humana Press, Totowa. doi: 10.1007/978-1-60761-925-3_5 Google Scholar
  27. Shpilyov AV, Zinchenko VV, Shestakov SV et al (2005) Inactivation of the geranylgeranyl reductase (ChlP) gene in the cyanobacterium Synechocystis sp. PCC 6803. Biochim et Biophys Acta 1706:195–203. doi: 10.1016/j.bbabio.2004.11.001 CrossRefGoogle Scholar
  28. Suga M, Akita F, Hirata K et al (2015) Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses. Nature 517:99–103. doi: 10.1038/nature13991 CrossRefPubMedGoogle Scholar
  29. Tanaka A, Fukushima Y, Kamiya N (2017) Two different structures of the oxygen-evolving complex in the same polypeptide frameworks of Photosystem II. J Am Chem Soc 139:1718–1721. doi: 10.1021/jacs.6b09666 CrossRefPubMedGoogle Scholar
  30. Umena Y, Kawakami K, Shen J-R, Kamiya N (2012) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55–60. doi: 10.1038/nature09913 CrossRefGoogle Scholar
  31. Wang J (2017) Systematic analysis of residual density suggests that a major limitation in well-refined X-ray structures of proteins is the omission of ordered solvent. Protein Sci 26(5):1012–1023. doi: 10.1002/pro.3145 CrossRefPubMedGoogle Scholar
  32. Winn MD et al (2011) Overview of the CCP4 suite and current developments. Acta Cryst D 67:235–242.CrossRefGoogle Scholar
  33. Zouni A, Witt HT, Kern J et al (2001) Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409:739–743. doi: 10.1038/35055589 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenUSA
  2. 2.Department of ChemistryUniversity of ConnecticutStorrsUSA
  3. 3.Department of ChemistryYale UniversityNew HavenUSA

Personalised recommendations