Advertisement

Photosynthesis Research

, Volume 134, Issue 1, pp 39–49 | Cite as

Concentration-based self-assembly of phycocyanin

  • Ido Eisenberg
  • Dvir Harris
  • Yael Levi-Kalisman
  • Shira Yochelis
  • Asaf Shemesh
  • Gili Ben-Nissan
  • Michal Sharon
  • Uri Raviv
  • Noam Adir
  • Nir Keren
  • Yossi Paltiel
Original Article

Abstract

Cyanobacteria light-harvesting complexes can change their structure to cope with fluctuating environmental conditions. Studying in vivo structural changes is difficult owing to complexities imposed by the cellular environment. Mimicking this system in vitro is challenging, as well. The in vivo system is highly concentrated, and handling similar in vitro concentrated samples optically is difficult because of high absorption. In this research, we mapped the cyanobacteria antennas self-assembly pathways using highly concentrated solutions of phycocyanin (PC) that mimic the in vivo condition. PC was isolated from the thermophilic cyanobacterium Thermosynechococcus vulcanus and measured by several methods. PC has three oligomeric states: hexamer, trimer, and monomer. We showed that the oligomeric state was changed upon increase of PC solution concentration. This oligomerization mechanism may enable photosynthetic organisms to adapt their light-harvesting system to a wide range of environmental conditions.

Keywords

Phycocyanin Oligomerization TEM SAXS Native mass spectrometry 

Abbreviations

LHC

Light-harvesting complexes

PBS

Phycobilisome

PC

Phycocyanin

APC

Allophycocyanin

LS

Low salt

DW

Distilled water

DDW

Double-distilled water

TEM

Transmission electron microscopy

Cryo-TEM

Cryogenic transmission electron microscopy

SAXS

Small-angle X-ray scattering

MS

Mass spectrometry

Notes

Acknowledgements

This research was supported by a Grant No. 3-12405(151235) from the Ministry of Science, Technology and Space, Israel, the National Science Council (NSC) of Taiwan, the Israel Science Foundation (843/16) and the US-Israel Bi-National Science Fund (2014395).

Supplementary material

11120_2017_406_MOESM1_ESM.pdf (818 kb)
Supplementary material 1 (PDF 818 KB)

References

  1. Adir N (2005) Elucidation of the molecular structures of components of the phycobilisome: reconstructing a giant. Photosynth Res 85:15–32. doi: 10.1007/s11120-004-2143-y CrossRefPubMedGoogle Scholar
  2. Adir N, Dobrovetsky Y, Lerner N (2001) Structure of c-phycocyanin from the thermophilic cyanobacterium Synechococcus vulcanus at 2.5 Å: structural implications for thermal stability in phycobilisome assembly1. J Mol Biol 313:71–81. doi: 10.1006/jmbi.2001.5030 CrossRefPubMedGoogle Scholar
  3. Bar-Eyal L, Eisenberg I, Faust A, et al (2015) An easily reversible structural change underlies mechanisms enabling desert crust cyanobacteria to survive desiccation. Biochim Biophys Acta BBA 1847:1267–1273. doi: 10.1016/j.bbabio.2015.07.008 CrossRefPubMedGoogle Scholar
  4. Ben-Nissan G, Belov ME, Morgenstern D et al (2017) Triple-stage mass spectrometry unravels the heterogeneity of an endogenous protein complex. Anal Chem. doi: 10.1021/acs.analchem.7b00518 Google Scholar
  5. Berns DS, MacColl R (1989) Phycocyanin in physical chemical studies. Chem Rev 89:807–825CrossRefGoogle Scholar
  6. Brejc K, Ficner R, Huber R, Steinbacher S (1995) Isolation, crystallization, crystal structure analysis and refinement of allophycocyanin from the cyanobacterium Spirulina platensis at 2.3 Å resolution. J Mol Biol 249:424–440. doi: 10.1006/jmbi.1995.0307 CrossRefPubMedGoogle Scholar
  7. Castenholz RW (1981) Isolation and cultivation of thermophilic cyanobacteria. In: Starr MP, Stolp H, Trüper HG et al (eds) The prokaryotes. Springer, Berlin, pp 236–246CrossRefGoogle Scholar
  8. Chmeliov J, Gelzinis A, Songaila E, et al (2016) The nature of self-regulation in photosynthetic light-harvesting antenna. Nat Plants 2:16045. doi: 10.1038/nplants.2016.45 CrossRefPubMedGoogle Scholar
  9. Croce R, van Amerongen H (2014) Natural strategies for photosynthetic light harvesting. Nat Chem Biol 10:492–501. doi: 10.1038/nchembio.1555 CrossRefPubMedGoogle Scholar
  10. David L, Marx A, Adir N (2011) High-resolution crystal structures of trimeric and rod phycocyanin. J Mol Biol 405:201–213. doi: 10.1016/j.jmb.2010.10.036 CrossRefPubMedGoogle Scholar
  11. Deegan RD, Bakajin O, Dupont TF et al (1997) Capillary flow as the cause of ring stains from dried liquid drops. Nature 389:827–829. doi: 10.1038/39827 CrossRefGoogle Scholar
  12. Eisenberg I, Caycedo-Soler F, Harris D et al (2017) Regulating the energy flow in a cyanobacterial light-harvesting antenna complex. J Phys Chem B 121:1240–1247. doi: 10.1021/acs.jpcb.6b10590 CrossRefPubMedGoogle Scholar
  13. Figueroa M, Martínez-Oyanedel J, Matamala AR et al (2012) In silico model of an antenna of a phycobilisome and energy transfer rates determination by theoretical Förster approach. Protein Sci 21:1921–1928. doi: 10.1002/pro.2176 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Foguel D, Chaloub RM, Silva JL et al (1992) Pressure and low temperature effects on the fluorescence emission spectra and lifetimes of the photosynthetic components of cyanobacteria. Biophys J 63:1613–1622. doi: 10.1016/S0006-3495(92)81756-3 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gantt E (1981) Phycobilisomes. Annu Rev Plant Physiol 32:327–347. doi: 10.1146/annurev.pp.32.060181.001551 CrossRefGoogle Scholar
  16. Ginsburg A, Ben-Nun T, Asor R et al (2016) Reciprocal grids: a hierarchical algorithm for computing solution x-ray scattering curves from supramolecular complexes at high resolution. J Chem Inf Model 56:1518–1527. doi: 10.1021/acs.jcim.6b00159 CrossRefPubMedGoogle Scholar
  17. Glazer AN (1985) Light harvesting by phycobilisomes. Annu Rev Biophys Biophys Chem 14:47–77. doi: 10.1146/annurev.bb.14.060185.000403 CrossRefPubMedGoogle Scholar
  18. Guinier A, Fournet G (1955) Small angle scattering of X-rays. Wiley, HobokenGoogle Scholar
  19. Gwizdala M, Berera R, Kirilovsky D et al (2016) Controlling light harvesting with light. J Am Chem Soc. doi: 10.1021/jacs.6b04811 PubMedGoogle Scholar
  20. Hall DO, Rao K (1999) Photosynthesis. Cambridge University Press, CambridgeGoogle Scholar
  21. Hammersley AP, Svensson SO, Hanfland M, et al (1996) Two-dimensional detector software: from real detector to idealised image or two-theta scan. High Press Res 14:235–248. doi: 10.1080/08957959608201408 CrossRefGoogle Scholar
  22. Harel Y, Ohad I, Kaplan A (2004) Activation of photosynthesis and resistance to photoinhibition in cyanobacteria within biological desert crust. Plant Physiol 136:3070–3079. doi: 10.1104/pp.104.047712 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Holzwarth AR, Wendler J, Suter GW (1987) Studies on chromophore coupling in isolated phycobiliproteins. Biophys J 51:1–12. doi: 10.1016/S0006-3495(87)83306-4 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Horton P, Johnson MP, Perez-Bueno ML et al (2008) Photosynthetic acclimation: does the dynamic structure and macro-organisation of photosystem II in higher plant grana membranes regulate light harvesting states? FEBS J 275:1069–1079. doi: 10.1111/j.1742-4658.2008.06263.x CrossRefPubMedGoogle Scholar
  25. Kirshenbaum N, Michaelevski I, Sharon M (2010) Analyzing large protein complexes by structural mass spectrometry. JoVE. doi: 10.3791/1954 Google Scholar
  26. MacColl R (1998) Cyanobacterial phycobilisomes. J Struct Biol 124:311–334. doi: 10.1006/jsbi.1998.4062 CrossRefPubMedGoogle Scholar
  27. Marx A, Adir N (2013) Allophycocyanin and phycocyanin crystal structures reveal facets of phycobilisome assembly. Biochim Biophys Acta BBA 1827:311–318. doi: 10.1016/j.bbabio.2012.11.006 CrossRefPubMedGoogle Scholar
  28. McGregor A, Klartag M, David L, Adir N (2008) Allophycocyanin trimer stability and functionality are primarily due to polar enhanced hydrophobicity of the phycocyanobilin binding pocket. J Mol Biol 384:406–421. doi: 10.1016/j.jmb.2008.09.018 CrossRefPubMedGoogle Scholar
  29. Mirkovic T, Ostroumov EE, Anna JM et al (2016) Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chem Rev. doi: 10.1021/acs.chemrev.6b00002 PubMedGoogle Scholar
  30. Nadler M, Steiner A, Dvir T, et al (2011) Following the structural changes during zinc-induced crystallization of charged membranes using time-resolved solution X-ray scattering. Soft Matter 7:1512–1523. doi: 10.1039/C0SM00824A CrossRefGoogle Scholar
  31. Ren Y, Chi B, Melhem O et al (2013) Understanding the electronic energy transfer pathways in the trimeric and hexameric aggregation state of cyanobacteria phycocyanin within the framework of Förster theory. J Comput Chem 34:1005–1012. doi: 10.1002/jcc.23221 CrossRefPubMedGoogle Scholar
  32. Schirmer T, Bode W, Huber R et al (1985) X-ray crystallographic structure of the light-harvesting biliprotein C-phycocyanin from the thermophilic cyanobacterium Mastigocladus laminosus and its resemblance to globin structures. J Mol Biol 184:257–277. doi: 10.1016/0022-2836(85)90379-1 CrossRefPubMedGoogle Scholar
  33. Schreiber U, Vidaver W (1973) Photosynthetic energy transfer reversibly inhibited by hydrostatic pressure. Photochem Photobiol 18:205–208. doi: 10.1111/j.1751-1097.1973.tb06413.x CrossRefGoogle Scholar
  34. Sidler WA (1994) Phycobilisome and phycobiliprotein structures. In: Bryant DA (ed) The molecular biology of cyanobacteria. Springer, Dordrecht, pp 139–216CrossRefGoogle Scholar
  35. Six C, Thomas JC, Garczarek L et al (2007) Diversity and evolution of phycobilisomes in marine Synechococcus spp.: a comparative genomics study. Genome Biol 8:259. doi: 10.1186/gb-2007-8-12-r259 CrossRefGoogle Scholar
  36. Stec B, Troxler RF, Teeter MM (1999) Crystal structure of C-phycocyanin from Cyanidium caldarium provides a new perspective on phycobilisome assembly. Biophys J 76:2912–2921. doi: 10.1016/S0006-3495(99)77446-1 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Yamanaka G, Glazer AN (1980) Dynamic aspects of phycobilisome structure. Arch Microbiol 124:39–47. doi: 10.1007/BF00407026 CrossRefGoogle Scholar
  38. Yi ZW, Huang H, Kuang TY, Sui SF (2005) Three-dimensional architecture of phycobilisomes from Nostoc flagelliforme revealed by single particle electron microscopy. FEBS Lett 579:3569–3573. doi: 10.1016/j.febslet.2005.05.033 CrossRefPubMedGoogle Scholar
  39. Zhang F, Skoda MWA, Jacobs RMJ et al (2007) Protein interactions studied by SAXS: effect of ionic strength and protein concentration for BSA in aqueous solutions. J Phys Chem B 111:251–259. doi: 10.1021/jp0649955 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Ido Eisenberg
    • 1
    • 2
  • Dvir Harris
    • 3
  • Yael Levi-Kalisman
    • 2
    • 4
  • Shira Yochelis
    • 1
    • 2
  • Asaf Shemesh
    • 2
    • 5
  • Gili Ben-Nissan
    • 6
  • Michal Sharon
    • 6
  • Uri Raviv
    • 2
    • 5
  • Noam Adir
    • 3
  • Nir Keren
    • 7
  • Yossi Paltiel
    • 1
    • 2
  1. 1.Applied Physics DepartmentThe Hebrew University of Jerusalem, Givat-RamJerusalemIsrael
  2. 2.The Center for Nanoscience and NanotechnologyThe Hebrew University of Jerusalem, Givat-RamJerusalemIsrael
  3. 3.Schulich Faculty of ChemistryTechnion - Israel Institute of TechnologyHaifaIsrael
  4. 4.The Institute of Life SciencesThe Hebrew University of Jerusalem, Givat-RamJerusalemIsrael
  5. 5.Institute of ChemistryThe Hebrew University of Jerusalem, Givat-RamJerusalemIsrael
  6. 6.Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
  7. 7.Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life SciencesThe Hebrew University of Jerusalem, Givat-RamJerusalemIsrael

Personalised recommendations