Abstract
Oxygenic phototrophs typically utilize visible light (400–700 nm) to drive photosynthesis. However, a large fraction of the energy in sunlight is contained in the far-red region, which encompasses light beyond 700 nm. In nature, certain niche environments contain high levels of this far-red light due to filtering by other phototrophs, and in these environments, organisms with photosynthetic antenna systems adapted to absorbing far-red light are able to thrive. We used selective far-red light conditions to isolate such organisms in environmental samples. One cultured organism, the Eustigmatophyte alga Forest Park Isolate 5 (FP5), is able to absorb far-red light using a chlorophyll (Chl) a-containing antenna complex, and is able to grow under solely far-red light. Here we characterize the antenna system from this organism, which is able to shift the absorption of Chl a to >705 nm.
Similar content being viewed by others
References
Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410. doi:10.1016/S0022-2836(05)80360-2
Behrendt L, Larkum AWD, Norman A et al (2011) Endolithic chlorophyll d-containing phototrophs. ISME J 5:1072–1076. doi:10.1038/ismej.2010.195
Bína D, Gardian Z, Herbstová M et al (2014) Novel type of red-shifted chlorophyll a antenna complex from Chromera velia: II. Biochemistry and spectroscopy. Biochim Biophys Acta 1837:802–810. doi:10.1016/j.bbabio.2014.01.011
Blankenship RE, Chen M (2013) Spectral expansion and antenna reduction can enhance photosynthesis for energy production. Curr Opin Chem Biol 17:457–461. doi:10.1016/j.cbpa.2013.03.031
Büchel C (2003) Fucoxanthin-chlorophyll proteins in diatoms: 18 and 19 kDa subunits assemble into different oligomeric states. Biochemistry 42:13027–13034. doi:10.1021/bi0349468
Chen M, Blankenship RE (2011) Expanding the solar spectrum used by photosynthesis. Trends Plant Sci 16:427–431. doi:10.1016/j.tplants.2011.03.011
Chen M, Li Y, Birch D, Willows RD (2012) A cyanobacterium that contains chlorophyll f—a red-absorbing photopigment. FEBS Lett 586:3249–3254. doi:10.1016/j.febslet.2012.06.045
Durnford DG, Aebersold R, Green BR (1996) The fucoxanthin-chlorophyll proteins from a chromophyte alga are part of a large multigene family: structural and evolutionary relationships to other light harvesting antennae. Mol Gen Genet 253:377–386. doi:10.1007/s004380050334
Ferris MJ, Hirsch CF (1991) Method for isolation and purification of cyanobacteria. Appl Environ Microbiol 57:1448–1452. doi:10.1007/978-3-662-13187-9_8
Gan F, Zhang S, Rockwell NC et al (2014) Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light. Science 345:1–11. doi:10.1126/science.1256963
Gartner G, Stoyneva MP, Uzunov BA et al (2012) Ultrastructure of vegetative cells and autospores of an aerophytic strain of Vischeria stellata (Chodat ex Poulton) Pascher (Eustigmatophyceae) from Bulgaria. Fottea 12:273–280. doi:10.5507/fot.2012.019
Gundermann K, Büchel C (2014) The structural basis of biological energy generation. In: The structural basis of biological energy generation. Springer, New York, pp 21–37. doi:10.1007/978-94-017-8742-0_2
Herbstová M, Bína D, Koník P et al (2015) Molecular basis of chromatic adaptation in pennate diatom Phaeodactylum tricornutum. Biochim Biophys Acta 1847:534–543. doi:10.1016/j.bbabio.2015.02.016
Hibberd DJ, Leedale GF (1972) Observations on the cytology and ultrastructure of the new algal class, Eustigmatophyceae. Ann Bot 36:49–71. doi:10.1093/oxfordjournals.aob.a084577
Iliev I, Petkov G, Lukavsky J et al (2010) The alga trachydiscus minutus (Pseudostaurastrum Minutum): growth and composition. Gen Appl Plant Physiol 36:222–231
Kotabová E, Jarešová J, Kaňa R et al (2014) Novel type of red-shifted chlorophyll a antenna complex from Chromera velia. I. Physiological relevance and functional connection to photosystems. Biochim Biophys Acta 1837:734–743. doi:10.1016/j.bbabio.2014.01.012
Kühl M, Chen M, Ralph PJ et al (2005) A niche for cyanobacteria containing chlorophyll d. Nature 433:2005–2005. doi:10.1038/433820a
Kühlbrandt W (1994) Structure and function of the plant light-harvesting complex, LHC-II. Curr Opin Struct Biol 4:519–528. doi:10.1016/S0959-440X(94)90214-3
Li J, Han D, Wang D et al (2014) Choreography of transcriptomes and lipidomes of Nannochloropsis reveals the mechanisms of oil synthesis in microalgae. Plant Cell 26:1645–1665. doi:10.1105/tpc.113.121418
Li Y, Lin Y, Garvey CJ et al (2016) Characterization of red-shifted phycobilisomes isolated from the chlorophyll f-containing cyanobacterium Halomicronema hongdechloris. Biochim Biophys Acta 1857:107–114. doi:10.1016/j.bbabio.2015.10.009
Litvín R, Bína D, Herbstová M, Gardian Z (2016) Architecture of the light-harvesting apparatus of the Eustigmatophyte alga Nannochloropsis oceanica. Photosynth Res. doi:10.1007/s11120-016-0234-1
Liu Z, Yan H, Wang K et al (2004) Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428:287–292. doi:10.1038/nature02373
Llansola-Portoles MJ, Uragami C, Pascal AA et al (2016) Pigment structure in the FCP-like light-harvesting complex from Chromera velia. Biochim Biophys Acta 1857:1759–1765. doi:10.1016/j.bbabio.2016.08.006
Miyashita H, Ikemoto H, Kurano N et al (1996) Chlorophyll d as a major pigment. Nature 383:402–402. doi:10.1038/383402a0
Miyashita H, Adachi K, Kurano N et al (1997) Pigment composition of a novel oxygenic photosynthetic prokaryote containing chlorophyll d as the major chlorophyll. Plant Cell Physiol 38:274–281. doi:10.1093/oxfordjournals.pcp.a029163
Miyashita H, Ikemoto H, Kurano N et al (2003) Acaryochloris marina gen. et sp. nov. (Cyanobacteria), an oxygenic photosynthetic prokaryote containing chl d as a major pigment. J Phycol 39:1247–1253. doi:10.1111/j.0022-3646.2003.03-158.x
Mohr R, Voss B, Schliep M et al (2010) A new chlorophyll d-containing cyanobacterium: evidence for niche adaptation in the genus Acaryochloris. ISME J 4:1456–1469. doi:10.1038/ismej.2010.67
Moore RB, Oborník M, Janouškovec J et al (2008) A photosynthetic alveolate closely related to apicomplexan parasites. Nature 451:959–963. doi:10.1038/nature06635
Morosinotto T, Breton J, Bassi R, Croce R (2003) The nature of a chlorophyll ligand in Lhca proteins determines the far red fluorescence emission typical of photosystem I. J Biol Chem 278:49223–49229. doi:10.1074/jbc.M309203200
Ort DR, Merchant SS, Alric J et al (2015) Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc Natl Acad Sci 112:1–8. doi:10.1073/pnas.1424031112
Pazdernik M (2015) Light harvesting complexes and chromatic adaptation of Eustigmatophyte alga Trachydiscus minutus. Master’s Thesis, University of South Bohemia
Pettai H, Oja V, Freiberg A, Laisk A (2005a) Photosynthetic activity of far-red light in green plants. Biochim Biophys Acta 1708:311–321. doi:10.1016/j.bbabio.2005.05.005
Pettai H, Oja V, Freiberg A, Laisk A (2005b) The long-wavelength limit of plant photosynthesis. FEBS Lett 579:4017–4019. doi:10.1016/j.febslet.2005.04.088
Rivadossi A, Zucchelli G, Garlaschi FM, Jennings RC (1999) The importance of PS I chlorophyll red forms in light-harvesting by leaves. Photosynth Res 60:209–215. doi:10.1023/A:1006236829711
Santos LMA (1996) The Eustigmatophyceae: actual knowledge and research perspectives. Nova Hedwig Beih 112:391–406
Schagger H, von Jagow G (1991) Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem 199:223–231. doi:10.1016/0003-2697(91)90094-A
Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. doi:10.1038/nmeth.2019
Schindelin J, Rueden CT, Hiner MC, Eliceiri KW (2015) The ImageJ ecosystem: an open platform for biomedical image analysis. Mol Reprod Dev 82:518–529. doi:10.1002/mrd.22489
Scholz MJ, Weiss TL, Jinkerson RE et al (2014) Ultrastructure and composition of the Nannochloropsis gaditana cell wall. Eukaryot Cell 13:1450–1464. doi:10.1128/EC.00183-14
Shirai M, Matumaru K, Ohotake a et al (1989) Development of a solid medium for growth and isolation of axenic microcystis strains (cyanobacteria). Appl Environ Microbiol 55:2569–2571
Sukenik A, Livne A, Apt KE, Grossman AR (2000) Characterization of a gene encoding the light-harvesting violaxanthin- chlorophyll protein of Nannochloropsis sp. (Eustigmatophyceae). J Phycol 36:563–570. doi:10.1046/j.1529-8817.2000.99115.x
Tamura K, Stecher G, Peterson D et al (2013) MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197
Tichy J, Gardian Z, Bina D et al (2013) Light harvesting complexes of Chromera velia, photosynthetic relative of apicomplexan parasites. Biochim Biophys Acta 1827:723–729. doi:10.1016/j.bbabio.2013.02.002
Trissl HW (1993) Long-wavelength absorbing antenna pigments and heterogeneous absorption bands concentrate excitons and increase absorption cross section. Photosynth Res 35:247–263. doi:10.1007/BF00016556
Wei X, Su X, Cao P et al (2016) Structure of spinach photosystem II–LHCII supercomplex at 3.2 Å resolution. Nature 534:69–74. doi:10.1038/nature18020
Weiss TL, Roth R, Goodson C et al (2012) Colony organization in the green alga Botryococcus braunii (Race B) is specified by a complex extracellular matrix. Eukaryot Cell 11:1424–1440. doi:10.1128/EC.00184-12
Wientjes E, Croce R (2011) The light-harvesting complexes of higher-plant Photosystem I: Lhca1/4 and Lhca2/3 form two red-emitting heterodimers. Biochem J 433:477–485. doi:10.1042/BJ20101538
Wilhelm C, Jakob T (2006) Uphill energy transfer from long-wavelength absorbing chlorophylls to PS II in Ostreobium sp. is functional in carbon assimilation. Photosynth Res 87:323–329. doi:10.1007/s11120-005-9002-3
Wittig I, Braun H-P, Schägger H (2006) Blue native PAGE. Nat Protoc 1:418–428. doi:10.1038/nprot.2006.62
Acknowledgements
Funding for this work was from the Photosynthetic Antenna Research Center (PARC). PARC is a Department of Energy (DOE) Energy Frontier Research Center (EFRC) funded by Grant #DE-SC 0001035. Benjamin Wolf was supported by the William H. Danforth Plant Science Fellowship. Confocal microscopy was performed by Zuzana Kocsisova (Division of Biology and Biomedical Sciences, Washington University in St. Louis). We also acknowledge Jeremy D. King (Department of Biology, Washington University in St. Louis) for his contributions to the original sampling protocols and helpful discussions and Gregory S. Orf (Department of Chemistry, Washington University in St. Louis) for instruction on fluorimetry.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Wolf, B.M., Niedzwiedzki, D.M., Magdaong, N.C.M. et al. Characterization of a newly isolated freshwater Eustigmatophyte alga capable of utilizing far-red light as its sole light source. Photosynth Res 135, 177–189 (2018). https://doi.org/10.1007/s11120-017-0401-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11120-017-0401-z