Photosynthesis Research

, Volume 135, Issue 1–3, pp 177–189 | Cite as

Characterization of a newly isolated freshwater Eustigmatophyte alga capable of utilizing far-red light as its sole light source

  • Benjamin M. Wolf
  • Dariusz M. Niedzwiedzki
  • Nikki Cecil M. Magdaong
  • Robyn Roth
  • Ursula Goodenough
  • Robert E. Blankenship
Original Article


Oxygenic phototrophs typically utilize visible light (400–700 nm) to drive photosynthesis. However, a large fraction of the energy in sunlight is contained in the far-red region, which encompasses light beyond 700 nm. In nature, certain niche environments contain high levels of this far-red light due to filtering by other phototrophs, and in these environments, organisms with photosynthetic antenna systems adapted to absorbing far-red light are able to thrive. We used selective far-red light conditions to isolate such organisms in environmental samples. One cultured organism, the Eustigmatophyte alga Forest Park Isolate 5 (FP5), is able to absorb far-red light using a chlorophyll (Chl) a-containing antenna complex, and is able to grow under solely far-red light. Here we characterize the antenna system from this organism, which is able to shift the absorption of Chl a to >705 nm.


Light harvesting complex Stramenopila Eustigmatophyte Far-red light Antenna 



Funding for this work was from the Photosynthetic Antenna Research Center (PARC). PARC is a Department of Energy (DOE) Energy Frontier Research Center (EFRC) funded by Grant #DE-SC 0001035. Benjamin Wolf was supported by the William H. Danforth Plant Science Fellowship. Confocal microscopy was performed by Zuzana Kocsisova (Division of Biology and Biomedical Sciences, Washington University in St. Louis). We also acknowledge Jeremy D. King (Department of Biology, Washington University in St. Louis) for his contributions to the original sampling protocols and helpful discussions and Gregory S. Orf (Department of Chemistry, Washington University in St. Louis) for instruction on fluorimetry.

Supplementary material

11120_2017_401_MOESM1_ESM.docx (2.6 mb)
Supplementary material 1 (DOCX 2628 KB)


  1. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410. doi: 10.1016/S0022-2836(05)80360-2 CrossRefPubMedGoogle Scholar
  2. Behrendt L, Larkum AWD, Norman A et al (2011) Endolithic chlorophyll d-containing phototrophs. ISME J 5:1072–1076. doi: 10.1038/ismej.2010.195 CrossRefPubMedGoogle Scholar
  3. Bína D, Gardian Z, Herbstová M et al (2014) Novel type of red-shifted chlorophyll a antenna complex from Chromera velia: II. Biochemistry and spectroscopy. Biochim Biophys Acta 1837:802–810. doi: 10.1016/j.bbabio.2014.01.011 CrossRefPubMedGoogle Scholar
  4. Blankenship RE, Chen M (2013) Spectral expansion and antenna reduction can enhance photosynthesis for energy production. Curr Opin Chem Biol 17:457–461. doi: 10.1016/j.cbpa.2013.03.031 CrossRefPubMedGoogle Scholar
  5. Büchel C (2003) Fucoxanthin-chlorophyll proteins in diatoms: 18 and 19 kDa subunits assemble into different oligomeric states. Biochemistry 42:13027–13034. doi: 10.1021/bi0349468 CrossRefPubMedGoogle Scholar
  6. Chen M, Blankenship RE (2011) Expanding the solar spectrum used by photosynthesis. Trends Plant Sci 16:427–431. doi: 10.1016/j.tplants.2011.03.011 CrossRefPubMedGoogle Scholar
  7. Chen M, Li Y, Birch D, Willows RD (2012) A cyanobacterium that contains chlorophyll f—a red-absorbing photopigment. FEBS Lett 586:3249–3254. doi: 10.1016/j.febslet.2012.06.045 CrossRefPubMedGoogle Scholar
  8. Durnford DG, Aebersold R, Green BR (1996) The fucoxanthin-chlorophyll proteins from a chromophyte alga are part of a large multigene family: structural and evolutionary relationships to other light harvesting antennae. Mol Gen Genet 253:377–386. doi: 10.1007/s004380050334 CrossRefPubMedGoogle Scholar
  9. Ferris MJ, Hirsch CF (1991) Method for isolation and purification of cyanobacteria. Appl Environ Microbiol 57:1448–1452. doi: 10.1007/978-3-662-13187-9_8 PubMedPubMedCentralGoogle Scholar
  10. Gan F, Zhang S, Rockwell NC et al (2014) Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light. Science 345:1–11. doi: 10.1126/science.1256963 CrossRefGoogle Scholar
  11. Gartner G, Stoyneva MP, Uzunov BA et al (2012) Ultrastructure of vegetative cells and autospores of an aerophytic strain of Vischeria stellata (Chodat ex Poulton) Pascher (Eustigmatophyceae) from Bulgaria. Fottea 12:273–280. doi: 10.5507/fot.2012.019 CrossRefGoogle Scholar
  12. Gundermann K, Büchel C (2014) The structural basis of biological energy generation. In: The structural basis of biological energy generation. Springer, New York, pp 21–37. doi: 10.1007/978-94-017-8742-0_2 CrossRefGoogle Scholar
  13. Herbstová M, Bína D, Koník P et al (2015) Molecular basis of chromatic adaptation in pennate diatom Phaeodactylum tricornutum. Biochim Biophys Acta 1847:534–543. doi: 10.1016/j.bbabio.2015.02.016 CrossRefPubMedGoogle Scholar
  14. Hibberd DJ, Leedale GF (1972) Observations on the cytology and ultrastructure of the new algal class, Eustigmatophyceae. Ann Bot 36:49–71. doi: 10.1093/oxfordjournals.aob.a084577 CrossRefGoogle Scholar
  15. Iliev I, Petkov G, Lukavsky J et al (2010) The alga trachydiscus minutus (Pseudostaurastrum Minutum): growth and composition. Gen Appl Plant Physiol 36:222–231Google Scholar
  16. Kotabová E, Jarešová J, Kaňa R et al (2014) Novel type of red-shifted chlorophyll a antenna complex from Chromera velia. I. Physiological relevance and functional connection to photosystems. Biochim Biophys Acta 1837:734–743. doi: 10.1016/j.bbabio.2014.01.012 CrossRefPubMedGoogle Scholar
  17. Kühl M, Chen M, Ralph PJ et al (2005) A niche for cyanobacteria containing chlorophyll d. Nature 433:2005–2005. doi: 10.1038/433820a CrossRefGoogle Scholar
  18. Kühlbrandt W (1994) Structure and function of the plant light-harvesting complex, LHC-II. Curr Opin Struct Biol 4:519–528. doi: 10.1016/S0959-440X(94)90214-3 CrossRefGoogle Scholar
  19. Li J, Han D, Wang D et al (2014) Choreography of transcriptomes and lipidomes of Nannochloropsis reveals the mechanisms of oil synthesis in microalgae. Plant Cell 26:1645–1665. doi: 10.1105/tpc.113.121418 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Li Y, Lin Y, Garvey CJ et al (2016) Characterization of red-shifted phycobilisomes isolated from the chlorophyll f-containing cyanobacterium Halomicronema hongdechloris. Biochim Biophys Acta 1857:107–114. doi: 10.1016/j.bbabio.2015.10.009 CrossRefPubMedGoogle Scholar
  21. Litvín R, Bína D, Herbstová M, Gardian Z (2016) Architecture of the light-harvesting apparatus of the Eustigmatophyte alga Nannochloropsis oceanica. Photosynth Res. doi: 10.1007/s11120-016-0234-1 Google Scholar
  22. Liu Z, Yan H, Wang K et al (2004) Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428:287–292. doi: 10.1038/nature02373 CrossRefPubMedGoogle Scholar
  23. Llansola-Portoles MJ, Uragami C, Pascal AA et al (2016) Pigment structure in the FCP-like light-harvesting complex from Chromera velia. Biochim Biophys Acta 1857:1759–1765. doi: 10.1016/j.bbabio.2016.08.006 CrossRefPubMedGoogle Scholar
  24. Miyashita H, Ikemoto H, Kurano N et al (1996) Chlorophyll d as a major pigment. Nature 383:402–402. doi: 10.1038/383402a0 CrossRefGoogle Scholar
  25. Miyashita H, Adachi K, Kurano N et al (1997) Pigment composition of a novel oxygenic photosynthetic prokaryote containing chlorophyll d as the major chlorophyll. Plant Cell Physiol 38:274–281. doi: 10.1093/oxfordjournals.pcp.a029163 CrossRefGoogle Scholar
  26. Miyashita H, Ikemoto H, Kurano N et al (2003) Acaryochloris marina gen. et sp. nov. (Cyanobacteria), an oxygenic photosynthetic prokaryote containing chl d as a major pigment. J Phycol 39:1247–1253. doi: 10.1111/j.0022-3646.2003.03-158.x CrossRefGoogle Scholar
  27. Mohr R, Voss B, Schliep M et al (2010) A new chlorophyll d-containing cyanobacterium: evidence for niche adaptation in the genus Acaryochloris. ISME J 4:1456–1469. doi: 10.1038/ismej.2010.67 CrossRefPubMedGoogle Scholar
  28. Moore RB, Oborník M, Janouškovec J et al (2008) A photosynthetic alveolate closely related to apicomplexan parasites. Nature 451:959–963. doi: 10.1038/nature06635 CrossRefPubMedGoogle Scholar
  29. Morosinotto T, Breton J, Bassi R, Croce R (2003) The nature of a chlorophyll ligand in Lhca proteins determines the far red fluorescence emission typical of photosystem I. J Biol Chem 278:49223–49229. doi: 10.1074/jbc.M309203200 CrossRefPubMedGoogle Scholar
  30. Ort DR, Merchant SS, Alric J et al (2015) Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc Natl Acad Sci 112:1–8. doi: 10.1073/pnas.1424031112 CrossRefGoogle Scholar
  31. Pazdernik M (2015) Light harvesting complexes and chromatic adaptation of Eustigmatophyte alga Trachydiscus minutus. Master’s Thesis, University of South BohemiaGoogle Scholar
  32. Pettai H, Oja V, Freiberg A, Laisk A (2005a) Photosynthetic activity of far-red light in green plants. Biochim Biophys Acta 1708:311–321. doi: 10.1016/j.bbabio.2005.05.005 CrossRefPubMedGoogle Scholar
  33. Pettai H, Oja V, Freiberg A, Laisk A (2005b) The long-wavelength limit of plant photosynthesis. FEBS Lett 579:4017–4019. doi: 10.1016/j.febslet.2005.04.088 CrossRefPubMedGoogle Scholar
  34. Rivadossi A, Zucchelli G, Garlaschi FM, Jennings RC (1999) The importance of PS I chlorophyll red forms in light-harvesting by leaves. Photosynth Res 60:209–215. doi: 10.1023/A:1006236829711 CrossRefGoogle Scholar
  35. Santos LMA (1996) The Eustigmatophyceae: actual knowledge and research perspectives. Nova Hedwig Beih 112:391–406Google Scholar
  36. Schagger H, von Jagow G (1991) Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem 199:223–231. doi: 10.1016/0003-2697(91)90094-A CrossRefPubMedGoogle Scholar
  37. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. doi: 10.1038/nmeth.2019 CrossRefPubMedGoogle Scholar
  38. Schindelin J, Rueden CT, Hiner MC, Eliceiri KW (2015) The ImageJ ecosystem: an open platform for biomedical image analysis. Mol Reprod Dev 82:518–529. doi: 10.1002/mrd.22489 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Scholz MJ, Weiss TL, Jinkerson RE et al (2014) Ultrastructure and composition of the Nannochloropsis gaditana cell wall. Eukaryot Cell 13:1450–1464. doi: 10.1128/EC.00183-14 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Shirai M, Matumaru K, Ohotake a et al (1989) Development of a solid medium for growth and isolation of axenic microcystis strains (cyanobacteria). Appl Environ Microbiol 55:2569–2571PubMedPubMedCentralGoogle Scholar
  41. Sukenik A, Livne A, Apt KE, Grossman AR (2000) Characterization of a gene encoding the light-harvesting violaxanthin- chlorophyll protein of Nannochloropsis sp. (Eustigmatophyceae). J Phycol 36:563–570. doi: 10.1046/j.1529-8817.2000.99115.x CrossRefGoogle Scholar
  42. Tamura K, Stecher G, Peterson D et al (2013) MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi: 10.1093/molbev/mst197 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Tichy J, Gardian Z, Bina D et al (2013) Light harvesting complexes of Chromera velia, photosynthetic relative of apicomplexan parasites. Biochim Biophys Acta 1827:723–729. doi: 10.1016/j.bbabio.2013.02.002 CrossRefPubMedGoogle Scholar
  44. Trissl HW (1993) Long-wavelength absorbing antenna pigments and heterogeneous absorption bands concentrate excitons and increase absorption cross section. Photosynth Res 35:247–263. doi: 10.1007/BF00016556 CrossRefPubMedGoogle Scholar
  45. Wei X, Su X, Cao P et al (2016) Structure of spinach photosystem II–LHCII supercomplex at 3.2 Å resolution. Nature 534:69–74. doi: 10.1038/nature18020 CrossRefPubMedGoogle Scholar
  46. Weiss TL, Roth R, Goodson C et al (2012) Colony organization in the green alga Botryococcus braunii (Race B) is specified by a complex extracellular matrix. Eukaryot Cell 11:1424–1440. doi: 10.1128/EC.00184-12 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Wientjes E, Croce R (2011) The light-harvesting complexes of higher-plant Photosystem I: Lhca1/4 and Lhca2/3 form two red-emitting heterodimers. Biochem J 433:477–485. doi: 10.1042/BJ20101538 CrossRefPubMedGoogle Scholar
  48. Wilhelm C, Jakob T (2006) Uphill energy transfer from long-wavelength absorbing chlorophylls to PS II in Ostreobium sp. is functional in carbon assimilation. Photosynth Res 87:323–329. doi: 10.1007/s11120-005-9002-3 CrossRefPubMedGoogle Scholar
  49. Wittig I, Braun H-P, Schägger H (2006) Blue native PAGE. Nat Protoc 1:418–428. doi: 10.1038/nprot.2006.62 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Benjamin M. Wolf
    • 1
    • 2
    • 3
  • Dariusz M. Niedzwiedzki
    • 2
  • Nikki Cecil M. Magdaong
    • 1
    • 2
    • 3
  • Robyn Roth
    • 4
  • Ursula Goodenough
    • 1
  • Robert E. Blankenship
    • 1
    • 2
    • 3
  1. 1.Department of BiologyWashington University in St. LouisSt. LouisUSA
  2. 2.Photosynthetic Antenna Research CenterWashington University in St. LouisSt. LouisUSA
  3. 3.Department of ChemistryWashington University in St. LouisSt. LouisUSA
  4. 4.Washington University Center for Cellular ImagingWashington University in St. LouisSt. LouisUSA

Personalised recommendations