Carotenoid to bacteriochlorophyll energy transfer in the RC–LH1–PufX complex from Rhodobacter sphaeroides containing the extended conjugation keto-carotenoid diketospirilloxanthin

Abstract

RC–LH1–PufX complexes from a genetically modified strain of Rhodobacter sphaeroides that accumulates carotenoids with very long conjugation were studied by ultrafast transient absorption spectroscopy. The complexes predominantly bind the carotenoid diketospirilloxanthin, constituting about 75% of the total carotenoids, which has 13 conjugated C=C bonds, and the conjugation is further extended to two terminal keto groups. Excitation of diketospirilloxanthin in the RC–LH1–PufX complex demonstrates fully functional energy transfer from diketospirilloxanthin to BChl a in the LH1 antenna. As for other purple bacterial LH complexes having carotenoids with long conjugation, the main energy transfer route is via the S2–Qx pathway. However, in contrast to LH2 complexes binding diketospirilloxanthin, in RC–LH1–PufX we observe an additional, minor energy transfer pathway associated with the S1 state of diketospirilloxanthin. By comparing the spectral properties of the S1 state of diketospirilloxanthin in solution, in LH2, and in RC–LH1–PufX, we propose that the carotenoid-binding site in RC–LH1–PufX activates the ICT state of diketospirilloxanthin, resulting in the opening of a minor S1/ICT-mediated energy transfer channel.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Adams PG, Hunter CN (2012) Adaptation of intracytoplasmic membranes to altered light intensity in Rhodobacter sphaeroides. BBA-Bioenergetics 1817:1616–1627

    CAS  Article  PubMed  Google Scholar 

  2. Andersson PO, Gillbro T (1995) Photophysics and dynamics of the lowest excited singlet-state in long substituted polyenes with implications to the very long-chain limit. J Chem Phys 103:2509–2519

    CAS  Article  Google Scholar 

  3. Berera R, Gwizdala M, van Stokkum IHM et al (2013) Excited states of the inactive and active forms of the orange carotenoid protein. J Phys Chem B 117:9121–9128. doi:10.1021/jp307420p

    CAS  Article  PubMed  Google Scholar 

  4. Billsten HH, Zigmantas D, Sundström V, Polívka T (2002) Dynamics of vibrational relaxation in the S1 state of carotenoids having 11 conjugated C=C bonds. Chem Phys Lett 355:465–470

    Article  Google Scholar 

  5. Bullough PA, Qian P, Hunter CN (2008) Reaction center-light-harvesting core complexes of purple bacteria. In: Hunter CN, Daldal F, Thurnauer MC, Beatty JT (eds) The Purple Phototrophic Bacteria. Springer, Dordrecht, pp 155–179

    Google Scholar 

  6. Chábera P, Fuciman M, Hříbek P, Polívka T (2009) Effect of carotenoid structure on excited-state dynamics of carbonyl carotenoids. Phys Chem Chem Phys 11:8795–8803. doi:10.1039/b909924g

    Article  PubMed  Google Scholar 

  7. Chen G, Canniffe DP, Martin EC, Hunter CN (2016) Absence of the cbb 3 terminal oxidase reveals an active oxidative cyclase involved in bacteriochlorophyll biosynthesis in Rhodobacter sphaeroides. J Bacteriol 198:2056–2063

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Chi SC, Mothersole DJ, Dilbeck PL, Niedzwiedzki DM, Zhang H, Qian P, Vasilev C, Grayson KJ, Jackson PJ, Martin EC, Li Y, Holten D, Hunter CN (2015) Assembly of functional photosystem complexes in Rhodobacter sphaeroides incorporating carotenoids from the spirilloxanthin pathway. BBA-Bioenergetics 1847:189–201

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Christensen RL, Enriquez MM, Wagner NL, Peacock-Villada AY, Scriban C, Schrock RR, Polívka T, Frank HA, Birge RR (2013) Energetics and dynamics of the low-lying electronic states of constrained polyenes: implications for infinite polyenes. J Phys Chem A 117:1449–1465

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Cogdell RJ, Howard TD, Bittl R, Schlodder E, Geisenheimer I, Lubitz W (2000) How carotenoids protect bacterial photosynthesis. Philos Trans R Soc B 1402:1345–1349

    Article  Google Scholar 

  11. Croce R, van Amerongen H (2014) Natural strategies for photosynthetic light harvesting. Nat Chem Biol 10:492–501

    CAS  Article  PubMed  Google Scholar 

  12. Dilbeck PL, Tang Q, Mothersole DJ, Martin EC, Hunter CN, Bocian DF, Holten D, Niedzwiedzki DM (2016) Quenching capabilities of long-chain carotenoids in light-harvesting-2 complexes from Rhodobacter sphaeroides with an engineered carotenoid synthesis pathway. J Phys Chem B 120:5429–5443. doi:10.1021/acs.jpcb.6b03305

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Durchan M, Herbstová M, Fuciman M, Gardian Z, Vácha F, Polívka T (2010) Carotenoids in energy transfer and quenching processes in Pcb and Pcb PS I complexes from Prochlorothrix hollandica. J Phys Chem B 114:9275–9282

    CAS  Article  PubMed  Google Scholar 

  14. Enriquez MM, Fuciman M, Lafountain AM et al (2010) The intramolecular charge transfer state in carbonyl-containing polyenes and carotenoids. J Phys Chem B 114:12416–12426. doi:10.1021/jp106113h

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Frank HA, Bautista JA, Josue J et al (2000) Effect of the solvent environment on the spectroscopic properties and dynamics of the lowest excited states of carotenoids. J Phys Chem B 104:4569–4577. doi:10.1021/jp000079u

    CAS  Article  Google Scholar 

  16. García-Asua G, Lang HP, Cogdell RJ, Hunter CN (1998) Carotenoid diversity: a modular role for the phytoene desaturase step. Trends Plant Sci 3:445–449

    Article  Google Scholar 

  17. Gerjets T, Steiger, S, Sandmann G (2009) Catalytic properties of the expressed acyclic carotenoid 2-ketolases from Rhodobacter capsulatus and Rubrivivax gelatinosus. BBA-Bioenegetics 1791:125–131.

    CAS  Google Scholar 

  18. Gradinaru CC, Kennis JTM, Papagiannakis E, van Stokkum IHM, Cogdell RJ, Fleming GR, Niederman RA, van Grondelle R (2001) An unusual pathway of excitation energy deactivation in carotenoids: singlet-to-triplet conversion on an ultrafast timescale in a photosynthetic antenna. Proc Natl Acad Sci USA 98:2364–2369

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Koepke J, Hu XC, Muenke C, Schulten K, Michel H (1996) The crystal structure of the light-harvesting complex II (B800–850) from Rhodospirillum molischianum. Structure 4:581–597

    CAS  Article  PubMed  Google Scholar 

  20. Kosumi D, Fujiwara M, Fujii R, Cogdell RJ, Hashimoto H, Yoshizawa M (2009) The dependence of the ultrafast relaxation kinetics of the S2 and S1 states in β-carotene homologs and lycopene on conjugation length studied by femtosecond time-resolved absorption and Kerr-gate fluorescence spectroscopies. J Chem Phys 130:214506

    Article  PubMed  Google Scholar 

  21. Lang HP, Hunter CN (1994) The relationship between carotenoid biosynthesis and the assembly of the light harvesting LH2 complex in Rhodobacter sphaeroides. Biochem J 298:197–205

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ, Isaacs NW (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374:517–521

    CAS  Article  Google Scholar 

  23. Mirkovic T, Ostroumov EE, Anna JM, van Grondelle R, Govindjee, Scholes GD (2017) Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chem Rev 117:249–293. doi:10.1021/acs.chemrev.6b00002

    CAS  Article  PubMed  Google Scholar 

  24. Mothersole DJ, Jackson PJ, Vasilev C, Tucker JD, Brindley AA, Dickman MJ, Hunter CN (2016) PucC and LhaA direct efficient assembly of the light-harvesting complexes in Rhodobacter sphaeroides. Mol Microbiol 99:307–327

    CAS  Article  PubMed  Google Scholar 

  25. Niedzwiedzki D, Koscielecki JF, Cong H, Sullivan JO, Gibson, GN, Birge RR, Frank HA (2007) Ultrafast dynamics and excited state spectra of open-chain carotenoids at room and low temperatures. J Phys Chem B 111:5984–5998

    CAS  Article  PubMed  Google Scholar 

  26. Niedzwiedzki DM, Dilbeck PL, Tang Q, Mothersole DJ, Martin EC, Li Y, Bocian DF, Holten D, Hunter CN (2015) Functional characteristics of spirilloxanthin and longer-chain keto-bearing analogues in light-harvesting LH2 complexes from Rhodobacter sphaeroides with a genetically modified carotenoid bioynthesis pathway. BBA-Bioenergetics 1847:640–655

    CAS  Article  PubMed  Google Scholar 

  27. Niwa S, Yu LJ, Takeda K, Hirano Y, Kawakami T, Wang-Otomo ZY, Miki K (2014) Structure of the LH1-RC complex from Thermochromatium tepidum at 3.0 Å. Nature 508:228–232. doi:10.1038/nature13197

    CAS  Article  PubMed  Google Scholar 

  28. Olsen JD, Martin EC, Hunter CN (2017) The PufX quinone channel enables the LH1 antenna to bind more carotenoids for light collection and photoprotection. FEBS Lett 591:573–580. doi:10.1002/1873-3468.12575

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Perlík V et al (2015) Vibronic coupling explains the ultrafast carotenoid-to-bacteriochlorophyll energy transfer in natural and artificial light harvesters. J Chem Phys 142:212434. doi:10.1063/1.4919548

    Article  PubMed  Google Scholar 

  30. Polívka T, Frank HA (2010) Molecular factors controlling photosynthetic light harvesting by carotenoids. Acc Chem Res 43:1125–1134

    Article  PubMed  PubMed Central  Google Scholar 

  31. Polívka T, Sundström V (2004) Ultrafast dynamics of carotenoid excited states—from solution to natural and artificial systems. Chem Rev 104:2021–2072. doi:10.1021/cr020674n

    Article  PubMed  Google Scholar 

  32. Polívka T, Sundström V (2009) Dark excited states of carotenoids: consensus and controversy. Chem Phys Lett 477:1–11

    Article  Google Scholar 

  33. Polívka T, Frank HA, Enriquez MM, Niedzwiedzki DM, Liaaen-Jensen S, Hemming Helliwell JR, Helliwell M (2010) X-rc structure and time-resolved spectroscopy of the blue carotenoid violerythrin. J Phys Chem B 114:8760–8769. doi:10.1021/jp101296a

    Article  PubMed  Google Scholar 

  34. Pugh RJ, McGlynn P, Jones MR, Hunter CN (1998) The LH1–RC core complex of Rhodobacter sphaeroides: interaction between components, time-dependent assembly, and topology of the PufX protein. BBA-Bioenergetics 1366:301–316

    CAS  Article  PubMed  Google Scholar 

  35. Qian P, Bullough PA, Hunter CN (2008) 3-D reconstruction of a membrane-bending complex: the RC–LH1–PufX core dimer of Rhodobacter sphaeroides. J Biol Chem 283:14002–14011

    CAS  Article  PubMed  Google Scholar 

  36. Qian P, Papiz MZ, Jackson PJ, Brindley AA, Ng I, Olsen JD, Dickman MJ, Bullough PA, Hunter CN (2013) The 3-D structure of the Rhodobacter sphaeroides RC–LH1–PufX complex: dimerization and quinone channels promoted by PufX. BioChemistry 52:7575–7585

    CAS  Article  PubMed  Google Scholar 

  37. Scholes GD, Fleming GR, Olaya-Castro A, van Grondelle R (2011) Lessons from nature about solar light harvesting. Nat Chem 3:763–774

    CAS  Article  PubMed  Google Scholar 

  38. Šlouf V, Chábera P, Olsen JD et al (2012) Photoprotection in a purple phototrophic bacterium mediated by oxygen-dependent alteration of carotenoid excited-state properties. Proc Natl Acad Sci USA 109:8570–8575. doi:10.1073/pnas.1201413109

    Article  PubMed  PubMed Central  Google Scholar 

  39. Šlouf V, Kuznetsova V, Fuciman M, Bourcier de Carbon C, Wilson A, Kirilovsky D, Polívka T (2017) Ultrafast spectroscopy tracks carotenoid configurations in the orange and red carotenoid proteins from cyanobacteria. Photosynth Res 131:105–117

    Article  PubMed  Google Scholar 

  40. Staleva H, Zeeshan M, Chábera P, Partali V, Sliwka HR, Polívka T (2015) Ultrafast dynamics of long homologues of carotenoid zeaxanthin. J Phys Chem A 119:11304–11312. doi:10.1021/acs.jpca.5b08460

    CAS  Article  PubMed  Google Scholar 

  41. Tavan P, Schulten K (1987) Electronic excitations in finite and infinite polyenes. Phys Rev B 36:4337–4358

    CAS  Article  Google Scholar 

  42. van Stokkum IHM, Larsen DS, van Grondelle R (2004) Global and target analysis of time-resolved spectra. BBA-Bioenergetics 1657:82–104

    Article  PubMed  Google Scholar 

  43. Walla PJ, Linden PA, Ohta K, Fleming GR (2002) Excited-state kinetics of the carotenoid S1 state in LHC II and two-photon excitation spectra of lutein and β-carotene in solution: efficient Car S1 to Chl electronic energy transfer via hot S1 states? J Phys Chem A 106:1909–1916

    CAS  Article  Google Scholar 

  44. Zigmantas D, Hiller RG, Sharples FP et al (2004) Effect of a conjugated carbonyl group on the photophysical properties of carotenoids. Phys Chem Chem Phys 6:3009–3016. doi:10.1039/b315786e

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The research in Czech Republic was supported by the grant P501/12/G055 from the Czech Science Foundation. D.J.K.S., E.C.M., and C.N.H. gratefully acknowledge financial support from the Biotechnology and Biological Sciences Research Council (BBSRC UK), award number BB/M000265/1. CNH was also supported by an Advanced Award 338895 from the European Research Council. This work was also supported as part of the Photosynthetic Antenna Research Center (PARC), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC 0001035. The role of PARC role was to provide partial support for CNH.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tomáš Polívka.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Šlouf, V., Keşan, G., Litvín, R. et al. Carotenoid to bacteriochlorophyll energy transfer in the RC–LH1–PufX complex from Rhodobacter sphaeroides containing the extended conjugation keto-carotenoid diketospirilloxanthin. Photosynth Res 135, 33–43 (2018). https://doi.org/10.1007/s11120-017-0397-4

Download citation

Keywords

  • Light-harvesting
  • Carotenoids
  • Ultrafast spectroscopy
  • Purple bacteria
  • Energy transfer
  • Intramolecular charge transfer state