Carotenoid to bacteriochlorophyll energy transfer in the RC–LH1–PufX complex from Rhodobacter sphaeroides containing the extended conjugation keto-carotenoid diketospirilloxanthin

  • Václav Šlouf
  • Gürkan Keşan
  • Radek Litvín
  • David J. K. Swainsbury
  • Elizabeth C. Martin
  • C. Neil Hunter
  • Tomáš Polívka
Original Article

Abstract

RC–LH1–PufX complexes from a genetically modified strain of Rhodobacter sphaeroides that accumulates carotenoids with very long conjugation were studied by ultrafast transient absorption spectroscopy. The complexes predominantly bind the carotenoid diketospirilloxanthin, constituting about 75% of the total carotenoids, which has 13 conjugated C=C bonds, and the conjugation is further extended to two terminal keto groups. Excitation of diketospirilloxanthin in the RC–LH1–PufX complex demonstrates fully functional energy transfer from diketospirilloxanthin to BChl a in the LH1 antenna. As for other purple bacterial LH complexes having carotenoids with long conjugation, the main energy transfer route is via the S2–Qx pathway. However, in contrast to LH2 complexes binding diketospirilloxanthin, in RC–LH1–PufX we observe an additional, minor energy transfer pathway associated with the S1 state of diketospirilloxanthin. By comparing the spectral properties of the S1 state of diketospirilloxanthin in solution, in LH2, and in RC–LH1–PufX, we propose that the carotenoid-binding site in RC–LH1–PufX activates the ICT state of diketospirilloxanthin, resulting in the opening of a minor S1/ICT-mediated energy transfer channel.

Keywords

Light-harvesting Carotenoids Ultrafast spectroscopy Purple bacteria Energy transfer Intramolecular charge transfer state 

References

  1. Adams PG, Hunter CN (2012) Adaptation of intracytoplasmic membranes to altered light intensity in Rhodobacter sphaeroides. BBA-Bioenergetics 1817:1616–1627CrossRefPubMedGoogle Scholar
  2. Andersson PO, Gillbro T (1995) Photophysics and dynamics of the lowest excited singlet-state in long substituted polyenes with implications to the very long-chain limit. J Chem Phys 103:2509–2519CrossRefGoogle Scholar
  3. Berera R, Gwizdala M, van Stokkum IHM et al (2013) Excited states of the inactive and active forms of the orange carotenoid protein. J Phys Chem B 117:9121–9128. doi:10.1021/jp307420p CrossRefPubMedGoogle Scholar
  4. Billsten HH, Zigmantas D, Sundström V, Polívka T (2002) Dynamics of vibrational relaxation in the S1 state of carotenoids having 11 conjugated C=C bonds. Chem Phys Lett 355:465–470CrossRefGoogle Scholar
  5. Bullough PA, Qian P, Hunter CN (2008) Reaction center-light-harvesting core complexes of purple bacteria. In: Hunter CN, Daldal F, Thurnauer MC, Beatty JT (eds) The Purple Phototrophic Bacteria. Springer, Dordrecht, pp 155–179Google Scholar
  6. Chábera P, Fuciman M, Hříbek P, Polívka T (2009) Effect of carotenoid structure on excited-state dynamics of carbonyl carotenoids. Phys Chem Chem Phys 11:8795–8803. doi:10.1039/b909924g CrossRefPubMedGoogle Scholar
  7. Chen G, Canniffe DP, Martin EC, Hunter CN (2016) Absence of the cbb 3 terminal oxidase reveals an active oxidative cyclase involved in bacteriochlorophyll biosynthesis in Rhodobacter sphaeroides. J Bacteriol 198:2056–2063CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chi SC, Mothersole DJ, Dilbeck PL, Niedzwiedzki DM, Zhang H, Qian P, Vasilev C, Grayson KJ, Jackson PJ, Martin EC, Li Y, Holten D, Hunter CN (2015) Assembly of functional photosystem complexes in Rhodobacter sphaeroides incorporating carotenoids from the spirilloxanthin pathway. BBA-Bioenergetics 1847:189–201CrossRefPubMedPubMedCentralGoogle Scholar
  9. Christensen RL, Enriquez MM, Wagner NL, Peacock-Villada AY, Scriban C, Schrock RR, Polívka T, Frank HA, Birge RR (2013) Energetics and dynamics of the low-lying electronic states of constrained polyenes: implications for infinite polyenes. J Phys Chem A 117:1449–1465CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cogdell RJ, Howard TD, Bittl R, Schlodder E, Geisenheimer I, Lubitz W (2000) How carotenoids protect bacterial photosynthesis. Philos Trans R Soc B 1402:1345–1349CrossRefGoogle Scholar
  11. Croce R, van Amerongen H (2014) Natural strategies for photosynthetic light harvesting. Nat Chem Biol 10:492–501CrossRefPubMedGoogle Scholar
  12. Dilbeck PL, Tang Q, Mothersole DJ, Martin EC, Hunter CN, Bocian DF, Holten D, Niedzwiedzki DM (2016) Quenching capabilities of long-chain carotenoids in light-harvesting-2 complexes from Rhodobacter sphaeroides with an engineered carotenoid synthesis pathway. J Phys Chem B 120:5429–5443. doi:10.1021/acs.jpcb.6b03305 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Durchan M, Herbstová M, Fuciman M, Gardian Z, Vácha F, Polívka T (2010) Carotenoids in energy transfer and quenching processes in Pcb and Pcb PS I complexes from Prochlorothrix hollandica. J Phys Chem B 114:9275–9282CrossRefPubMedGoogle Scholar
  14. Enriquez MM, Fuciman M, Lafountain AM et al (2010) The intramolecular charge transfer state in carbonyl-containing polyenes and carotenoids. J Phys Chem B 114:12416–12426. doi:10.1021/jp106113h CrossRefPubMedPubMedCentralGoogle Scholar
  15. Frank HA, Bautista JA, Josue J et al (2000) Effect of the solvent environment on the spectroscopic properties and dynamics of the lowest excited states of carotenoids. J Phys Chem B 104:4569–4577. doi:10.1021/jp000079u CrossRefGoogle Scholar
  16. García-Asua G, Lang HP, Cogdell RJ, Hunter CN (1998) Carotenoid diversity: a modular role for the phytoene desaturase step. Trends Plant Sci 3:445–449CrossRefGoogle Scholar
  17. Gerjets T, Steiger, S, Sandmann G (2009) Catalytic properties of the expressed acyclic carotenoid 2-ketolases from Rhodobacter capsulatus and Rubrivivax gelatinosus. BBA-Bioenegetics 1791:125–131.Google Scholar
  18. Gradinaru CC, Kennis JTM, Papagiannakis E, van Stokkum IHM, Cogdell RJ, Fleming GR, Niederman RA, van Grondelle R (2001) An unusual pathway of excitation energy deactivation in carotenoids: singlet-to-triplet conversion on an ultrafast timescale in a photosynthetic antenna. Proc Natl Acad Sci USA 98:2364–2369CrossRefPubMedPubMedCentralGoogle Scholar
  19. Koepke J, Hu XC, Muenke C, Schulten K, Michel H (1996) The crystal structure of the light-harvesting complex II (B800–850) from Rhodospirillum molischianum. Structure 4:581–597CrossRefPubMedGoogle Scholar
  20. Kosumi D, Fujiwara M, Fujii R, Cogdell RJ, Hashimoto H, Yoshizawa M (2009) The dependence of the ultrafast relaxation kinetics of the S2 and S1 states in β-carotene homologs and lycopene on conjugation length studied by femtosecond time-resolved absorption and Kerr-gate fluorescence spectroscopies. J Chem Phys 130:214506CrossRefPubMedGoogle Scholar
  21. Lang HP, Hunter CN (1994) The relationship between carotenoid biosynthesis and the assembly of the light harvesting LH2 complex in Rhodobacter sphaeroides. Biochem J 298:197–205CrossRefPubMedPubMedCentralGoogle Scholar
  22. McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ, Isaacs NW (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374:517–521CrossRefGoogle Scholar
  23. Mirkovic T, Ostroumov EE, Anna JM, van Grondelle R, Govindjee, Scholes GD (2017) Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chem Rev 117:249–293. doi:10.1021/acs.chemrev.6b00002 CrossRefPubMedGoogle Scholar
  24. Mothersole DJ, Jackson PJ, Vasilev C, Tucker JD, Brindley AA, Dickman MJ, Hunter CN (2016) PucC and LhaA direct efficient assembly of the light-harvesting complexes in Rhodobacter sphaeroides. Mol Microbiol 99:307–327CrossRefPubMedGoogle Scholar
  25. Niedzwiedzki D, Koscielecki JF, Cong H, Sullivan JO, Gibson, GN, Birge RR, Frank HA (2007) Ultrafast dynamics and excited state spectra of open-chain carotenoids at room and low temperatures. J Phys Chem B 111:5984–5998CrossRefPubMedGoogle Scholar
  26. Niedzwiedzki DM, Dilbeck PL, Tang Q, Mothersole DJ, Martin EC, Li Y, Bocian DF, Holten D, Hunter CN (2015) Functional characteristics of spirilloxanthin and longer-chain keto-bearing analogues in light-harvesting LH2 complexes from Rhodobacter sphaeroides with a genetically modified carotenoid bioynthesis pathway. BBA-Bioenergetics 1847:640–655CrossRefPubMedGoogle Scholar
  27. Niwa S, Yu LJ, Takeda K, Hirano Y, Kawakami T, Wang-Otomo ZY, Miki K (2014) Structure of the LH1-RC complex from Thermochromatium tepidum at 3.0 Å. Nature 508:228–232. doi:10.1038/nature13197 CrossRefPubMedGoogle Scholar
  28. Olsen JD, Martin EC, Hunter CN (2017) The PufX quinone channel enables the LH1 antenna to bind more carotenoids for light collection and photoprotection. FEBS Lett 591:573–580. doi:10.1002/1873-3468.12575 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Perlík V et al (2015) Vibronic coupling explains the ultrafast carotenoid-to-bacteriochlorophyll energy transfer in natural and artificial light harvesters. J Chem Phys 142:212434. doi:10.1063/1.4919548 CrossRefPubMedGoogle Scholar
  30. Polívka T, Frank HA (2010) Molecular factors controlling photosynthetic light harvesting by carotenoids. Acc Chem Res 43:1125–1134CrossRefPubMedPubMedCentralGoogle Scholar
  31. Polívka T, Sundström V (2004) Ultrafast dynamics of carotenoid excited states—from solution to natural and artificial systems. Chem Rev 104:2021–2072. doi:10.1021/cr020674n CrossRefPubMedGoogle Scholar
  32. Polívka T, Sundström V (2009) Dark excited states of carotenoids: consensus and controversy. Chem Phys Lett 477:1–11CrossRefGoogle Scholar
  33. Polívka T, Frank HA, Enriquez MM, Niedzwiedzki DM, Liaaen-Jensen S, Hemming Helliwell JR, Helliwell M (2010) X-rc structure and time-resolved spectroscopy of the blue carotenoid violerythrin. J Phys Chem B 114:8760–8769. doi:10.1021/jp101296a CrossRefPubMedGoogle Scholar
  34. Pugh RJ, McGlynn P, Jones MR, Hunter CN (1998) The LH1–RC core complex of Rhodobacter sphaeroides: interaction between components, time-dependent assembly, and topology of the PufX protein. BBA-Bioenergetics 1366:301–316CrossRefPubMedGoogle Scholar
  35. Qian P, Bullough PA, Hunter CN (2008) 3-D reconstruction of a membrane-bending complex: the RC–LH1–PufX core dimer of Rhodobacter sphaeroides. J Biol Chem 283:14002–14011CrossRefPubMedGoogle Scholar
  36. Qian P, Papiz MZ, Jackson PJ, Brindley AA, Ng I, Olsen JD, Dickman MJ, Bullough PA, Hunter CN (2013) The 3-D structure of the Rhodobacter sphaeroides RC–LH1–PufX complex: dimerization and quinone channels promoted by PufX. BioChemistry 52:7575–7585CrossRefPubMedGoogle Scholar
  37. Scholes GD, Fleming GR, Olaya-Castro A, van Grondelle R (2011) Lessons from nature about solar light harvesting. Nat Chem 3:763–774CrossRefPubMedGoogle Scholar
  38. Šlouf V, Chábera P, Olsen JD et al (2012) Photoprotection in a purple phototrophic bacterium mediated by oxygen-dependent alteration of carotenoid excited-state properties. Proc Natl Acad Sci USA 109:8570–8575. doi:10.1073/pnas.1201413109 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Šlouf V, Kuznetsova V, Fuciman M, Bourcier de Carbon C, Wilson A, Kirilovsky D, Polívka T (2017) Ultrafast spectroscopy tracks carotenoid configurations in the orange and red carotenoid proteins from cyanobacteria. Photosynth Res 131:105–117CrossRefPubMedGoogle Scholar
  40. Staleva H, Zeeshan M, Chábera P, Partali V, Sliwka HR, Polívka T (2015) Ultrafast dynamics of long homologues of carotenoid zeaxanthin. J Phys Chem A 119:11304–11312. doi:10.1021/acs.jpca.5b08460 CrossRefPubMedGoogle Scholar
  41. Tavan P, Schulten K (1987) Electronic excitations in finite and infinite polyenes. Phys Rev B 36:4337–4358CrossRefGoogle Scholar
  42. van Stokkum IHM, Larsen DS, van Grondelle R (2004) Global and target analysis of time-resolved spectra. BBA-Bioenergetics 1657:82–104CrossRefPubMedGoogle Scholar
  43. Walla PJ, Linden PA, Ohta K, Fleming GR (2002) Excited-state kinetics of the carotenoid S1 state in LHC II and two-photon excitation spectra of lutein and β-carotene in solution: efficient Car S1 to Chl electronic energy transfer via hot S1 states? J Phys Chem A 106:1909–1916CrossRefGoogle Scholar
  44. Zigmantas D, Hiller RG, Sharples FP et al (2004) Effect of a conjugated carbonyl group on the photophysical properties of carotenoids. Phys Chem Chem Phys 6:3009–3016. doi:10.1039/b315786e CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
  2. 2.Biological CentreCzech Academy of SciencesČeské BudějoviceCzech Republic
  3. 3.Department of Molecular Biology and BiotechnologyUniversity of SheffieldSheffieldUK

Personalised recommendations