Skip to main content
Log in

Biophysical modeling of in vitro and in vivo processes underlying regulated photoprotective mechanism in cyanobacteria

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Non-photochemical quenching (NPQ) is a mechanism responsible for high light tolerance in photosynthetic organisms. In cyanobacteria, NPQ is realized by the interplay between light-harvesting complexes, phycobilisomes (PBs), a light sensor and effector of NPQ, the photoactive orange carotenoid protein (OCP), and the fluorescence recovery protein (FRP). Here, we introduced a biophysical model, which takes into account the whole spectrum of interactions between PBs, OCP, and FRP and describes the experimental PBs fluorescence kinetics, unraveling interaction rate constants between the components involved and their relative concentrations in the cell. We took benefit from the possibility to reconstruct the photoprotection mechanism and its parts in vitro, where most of the parameters could be varied, to develop the model and then applied it to describe the NPQ kinetics in the Synechocystis sp. PCC 6803 mutant lacking photosystems. Our analyses revealed  that while an excess of the OCP over PBs is required to obtain substantial PBs fluorescence quenching in vitro, in vivo the OCP/PBs ratio is less than unity, due to higher local concentration of PBs, which was estimated as ~10−5 M, compared to in vitro experiments. The analysis of PBs fluorescence recovery on the basis of the generalized model of enzymatic catalysis resulted in determination of the FRP concentration in vivo close to 10% of the OCP concentration. Finally, the possible role of the FRP oligomeric state alteration in the kinetics of PBs fluorescence was shown. This paper provides the most comprehensive model of the OCP-induced PBs fluorescence quenching to date and the results are important for better understanding of the regulatory molecular mechanisms underlying NPQ in cyanobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bartosz G (1997) Oxidative stress in plants. Acta Physiol Plant 19(1): 47–64

    Article  CAS  Google Scholar 

  • Boulay C, Wilson A, D’Haene S, Kirilovsky D (2010) Identification of a protein required for recovery of full antenna capacity in OCP-related photoprotective mechanism in cyanobacteria. Proc Natl Acad Sci USA 107(25):11620–11625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao W, Enrique M (2013) Quantitative full time course analysis of nonlinear enzyme cycling kinetics. Sci Rep 3:2658

    Article  PubMed  PubMed Central  Google Scholar 

  • Ermakova-Gerdes S, Shestakov S, Vermaas WFJ (2015) Development of a photosystem I-less strain of Synechocystis sp. PCC 6803 for analysis of mutations in the photosystem II proteins D2 and CP43. In: Mathis P (ed) Photosynthesis: from biology to biosphere, vol 1. Kluwer, Dordrecht, pp 483–486

    Google Scholar 

  • Gorbunov MY, Kuzminov FI, Fadeev VV, Kim, JD, Falkowski PG (2011) A kinetic model of non-photochemical quenching in cyanobacteria. BBA Bioenerg 1807(12):1591–1599

    Article  CAS  Google Scholar 

  • Gupta S, Guttman M, Leverenz RL, Zhumadilova K, Pawlowski EG, Petzold CJ et al Kerfeld CA (2015) Local and global structural drivers for the photoactivation of the orange carotenoid protein. Proc Natl Acad Sci USA 112(41):E5567–E5574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gwizdala M, Wilson A, Kirilovsky D (2011) In vitro reconstitution of the cyanobacterial photoprotective mechanism mediated by the orange carotenoid protein in Synechocystis PCC 6803. Plant Cell 23(7):2631–2643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gwizdala M, Wilson A, Omairi-Nasser A, Kirilovsky D (2013) Characterization of the Synechocystis PCC 6803 fluorescence recovery protein involved in photoprotection. BBA Bioenerg 1827(3):348–354

    Article  CAS  Google Scholar 

  • Kerfeld CA, Sawaya MR, Brahmandam V, Cascio D, Ho KK, Trevithick-Sutton CC, Krogmann DW, Yeates TO (2003) The crystal structure of a cyanobacterial water-soluble carotenoid binding protein. Structure 11(1):55–65

    Article  CAS  PubMed  Google Scholar 

  • Kirilovsky D (2015) Modulating energy arriving at photochemical reaction centers: orange carotenoid protein-related photoprotection and state transitions. Photosynth Res 126(1):3–17

    Article  CAS  PubMed  Google Scholar 

  • Kirilovsky D, Kerfeld CA (2016) Cyanobacterial photoprotection by the orange carotenoid protein. Nat Plants 2:16180

    Article  CAS  PubMed  Google Scholar 

  • Kuzminov FI, Karapetyan NV, Rakhimberdieva MG, Elanskay IV, Gorbunov MY, Fadeev VV (2012) Investigation of OCP-triggered dissipation of excitation energy in PSI/PSII-less Synechocystis sp. PCC 6803 mutant using non-linear laser fluorimetry. BBA Bioenerg 1817(7):1012–1021

    Article  CAS  Google Scholar 

  • Kuzminov FI, Bolychevtseva YV, Elanskaya IV, Karapetyan NV (2014) Effect of APCD and APCF subunits depletion on phycobilisome fluorescence of the cyanobacterium Synechocystis PCC 6803. J Photochem Photobiol B 133:153–160

    Article  CAS  PubMed  Google Scholar 

  • Leverenz RL, Sutter M, Wilson A, Gupta S, Thurotte A, de Carbon CB et al. (2015) A 12 Å carotenoid translocation in a photoswitch associated with cyanobacterial photoprotection. Science 348(6242):1463–1466

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Zhang H, Niedzwiedzki DM, Prado M, He G, Gross ML, Blankenship RE (2013) Phycobilisomes supply excitations to both photosystems in a megacomplex in cyanobacteria. Science 342(6162): 1104–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maksimov EG, Schmitt FJ, Shirshin EA, Svirin MD, Elanskaya IV, Friedrich T et al. (2014) The time course of non-photochemical quenching in phycobilisomes of Synechocystis sp. PCC6803 as revealed by picosecond time-resolved fluorimetry. BBA Bioenerg 1837(9):1540–1547

    Article  CAS  Google Scholar 

  • Maksimov EG, Shirshin EA, Sluchanko NN, Zlenko DV, Parshina EY, Tsoraev GV et al. (2015a) The signaling state of orange carotenoid protein. Biophys J 109(3):595–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maksimov EG, Klementiev KE, Shirshin EA, Tsoraev GV, Elanskaya IV, Paschenko VZ (2015b) Features of temporal behavior of fluorescence recovery in Synechocystis sp. PCC6803. Photosynth Res 125(1–2):167–178

    Article  CAS  PubMed  Google Scholar 

  • Maksimov EG, Moldenhauer M, Shirshin EA, Parshina EA, Sluchanko NN, Klementiev KE, Tsoraev GV, Tavraz NN, Willoweit M, Schmitt FJ, Breitenbach J, Sandmann G, Paschenko VZ, Friedrich T, Rubin AB (2016) A comparative study of three signaling forms of the orange carotenoid protein. Photosynth Res 130(1):389–401

    Article  CAS  PubMed  Google Scholar 

  • Sedoud A, López-Igual R, Rehman A, Wilson A, Perreau F, Boulay C et al. (2014) The cyanobacterial photoactive orange carotenoid protein is an excellent singlet oxygen quencher. Plant Cell 26(4):1781–1791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sluchanko NN, Klementiev KE, Shirshin EA, Tsoraev GV, Friedrich T, Maksimov EG (2017) The purple Trp288Ala mutant of Synechocystis OCP persistently quenches phycobilisome fluorescence and tightly interacts with FRP. BBA Bioenerg 1858(1):1–11

    Article  CAS  Google Scholar 

  • Stadnichuk IN, Yanyushin MF, Bernat G, Zlenko DV, Krasilnikov PM, Lukashev EP, Maksimov EG, Paschenko VZ (2013) Fluorescence quenching of the phycobilisome terminal emitter LCM from the cyanobacterium Synechocystis sp. PCC 6803 detected in vivo and in vitro. J Photochem Photobiol B 125:137–145

    Article  CAS  PubMed  Google Scholar 

  • Sutter M, Wilson A, Leverenz RL, Lopez-Igual R, Thurotte A, Salmeen AE et al. (2013) Crystal structure of the FRP and identification of the active site for modulation of OCP-mediated photoprotection in cyanobacteria. Proc Natl Acad Sci USA 110(24):10022–10027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teipel J, Koshland DE (1969) Significance of intermediary plateau regions in enzyme saturation curves. Biochemistry 8(11):4656–4663

    Article  CAS  PubMed  Google Scholar 

  • Tian L, van Stokkum IH, Koehorst RB, Jongerius A, Kirilovsky D, van Amerongen H (2011) Site, rate, and mechanism of photoprotective quenching in cyanobacteria. J Am Chem Soc 133(45):18304–18311

    Article  CAS  PubMed  Google Scholar 

  • Tian L, Gwizdala M, van Stokkum IH, Koehorst RB, Kirilovsky D, van Amerongen H (2012) Picosecond kinetics of light harvesting and photoprotective quenching in wild-type and mutant phycobilisomes isolated from the cyanobacterium Synechocystis PCC 6803. Biophys J 102(7):1692–1700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson A et al (2006) A soluble carotenoid protein involved in phycobilisome-related energy dissipation in cyanobacteria. Plant Cell 18(4):992–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson A, Punginelli C, Gall A, Bonetti C, Alexandre M, Routaboul JM et al. (2008) A photoactive carotenoid protein acting as light intensity sensor. Proc Natl Acad Sci USA 105(33):12075–12080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Liu H, Niedzwiedzki DM, Prado M, Jiang J, Gross ML, Blankenship RE (2013) Molecular mechanism of photoactivation and structural location of the cyanobacterial orange carotenoid protein. Biochemistry 53(1):13–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work was supported by the Russian Foundation for Basic Research (Grant No. 16-05-01110), the German Ministry for Education and Research (to T.F.; WTZ-RUS grant 01DJ15007), the Russian Science Foundation (grant №14-17-00451), and the German Research Foundation—Cluster of Excellence “Unifying Concepts in Catalysis” (to T.F.). E.G.M. thanks the Russian Foundation for Basic Research (project No. 15-04-01930A), the Russian Ministry of Education and Science (project MK-5949.2015.4), the Dynasty Foundation Fellowship, RFBR, and Moscow City Government according to the research project No. 15-34-70007 «mol_а_mos» for partial support of this work. N.N.S. was supported by a scholarship from the President of Russian Federation (SP-367.2016.4). M.Y.G. was supported by NASA Ocean Biology and Biogeochemistry Program (Grant NNX16AT54G). We thank Kevin Wyman for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeny A. Shirshin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 238 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirshin, E.A., Nikonova, E.E., Kuzminov, F.I. et al. Biophysical modeling of in vitro and in vivo processes underlying regulated photoprotective mechanism in cyanobacteria. Photosynth Res 133, 261–271 (2017). https://doi.org/10.1007/s11120-017-0377-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-017-0377-8

Keywords

Navigation