Photosynthesis Research

, Volume 133, Issue 1–3, pp 261–271 | Cite as

Biophysical modeling of in vitro and in vivo processes underlying regulated photoprotective mechanism in cyanobacteria

  • Evgeny A. ShirshinEmail author
  • Elena E. Nikonova
  • Fedor I. Kuzminov
  • Nikolai N. Sluchanko
  • Irina V. Elanskaya
  • Maxim Y. Gorbunov
  • Victor V. Fadeev
  • Thomas Friedrich
  • Eugene G. Maksimov
Original Article


Non-photochemical quenching (NPQ) is a mechanism responsible for high light tolerance in photosynthetic organisms. In cyanobacteria, NPQ is realized by the interplay between light-harvesting complexes, phycobilisomes (PBs), a light sensor and effector of NPQ, the photoactive orange carotenoid protein (OCP), and the fluorescence recovery protein (FRP). Here, we introduced a biophysical model, which takes into account the whole spectrum of interactions between PBs, OCP, and FRP and describes the experimental PBs fluorescence kinetics, unraveling interaction rate constants between the components involved and their relative concentrations in the cell. We took benefit from the possibility to reconstruct the photoprotection mechanism and its parts in vitro, where most of the parameters could be varied, to develop the model and then applied it to describe the NPQ kinetics in the Synechocystis sp. PCC 6803 mutant lacking photosystems. Our analyses revealed  that while an excess of the OCP over PBs is required to obtain substantial PBs fluorescence quenching in vitro, in vivo the OCP/PBs ratio is less than unity, due to higher local concentration of PBs, which was estimated as ~10−5 M, compared to in vitro experiments. The analysis of PBs fluorescence recovery on the basis of the generalized model of enzymatic catalysis resulted in determination of the FRP concentration in vivo close to 10% of the OCP concentration. Finally, the possible role of the FRP oligomeric state alteration in the kinetics of PBs fluorescence was shown. This paper provides the most comprehensive model of the OCP-induced PBs fluorescence quenching to date and the results are important for better understanding of the regulatory molecular mechanisms underlying NPQ in cyanobacteria.


Cyanobacteria Non-photochemical quenching Orange carotenoid protein Fluorescence recovery protein Biophysical model Fluorescence 



The work was supported by the Russian Foundation for Basic Research (Grant No. 16-05-01110), the German Ministry for Education and Research (to T.F.; WTZ-RUS grant 01DJ15007), the Russian Science Foundation (grant №14-17-00451), and the German Research Foundation—Cluster of Excellence “Unifying Concepts in Catalysis” (to T.F.). E.G.M. thanks the Russian Foundation for Basic Research (project No. 15-04-01930A), the Russian Ministry of Education and Science (project MK-5949.2015.4), the Dynasty Foundation Fellowship, RFBR, and Moscow City Government according to the research project No. 15-34-70007 «mol_а_mos» for partial support of this work. N.N.S. was supported by a scholarship from the President of Russian Federation (SP-367.2016.4). M.Y.G. was supported by NASA Ocean Biology and Biogeochemistry Program (Grant NNX16AT54G). We thank Kevin Wyman for comments on the manuscript.

Supplementary material

11120_2017_377_MOESM1_ESM.pdf (239 kb)
Supplementary material 1 (PDF 238 KB)


  1. Bartosz G (1997) Oxidative stress in plants. Acta Physiol Plant 19(1): 47–64CrossRefGoogle Scholar
  2. Boulay C, Wilson A, D’Haene S, Kirilovsky D (2010) Identification of a protein required for recovery of full antenna capacity in OCP-related photoprotective mechanism in cyanobacteria. Proc Natl Acad Sci USA 107(25):11620–11625CrossRefPubMedPubMedCentralGoogle Scholar
  3. Cao W, Enrique M (2013) Quantitative full time course analysis of nonlinear enzyme cycling kinetics. Sci Rep 3:2658CrossRefPubMedPubMedCentralGoogle Scholar
  4. Ermakova-Gerdes S, Shestakov S, Vermaas WFJ (2015) Development of a photosystem I-less strain of Synechocystis sp. PCC 6803 for analysis of mutations in the photosystem II proteins D2 and CP43. In: Mathis P (ed) Photosynthesis: from biology to biosphere, vol 1. Kluwer, Dordrecht, pp 483–486Google Scholar
  5. Gorbunov MY, Kuzminov FI, Fadeev VV, Kim, JD, Falkowski PG (2011) A kinetic model of non-photochemical quenching in cyanobacteria. BBA Bioenerg 1807(12):1591–1599CrossRefGoogle Scholar
  6. Gupta S, Guttman M, Leverenz RL, Zhumadilova K, Pawlowski EG, Petzold CJ et al Kerfeld CA (2015) Local and global structural drivers for the photoactivation of the orange carotenoid protein. Proc Natl Acad Sci USA 112(41):E5567–E5574CrossRefPubMedPubMedCentralGoogle Scholar
  7. Gwizdala M, Wilson A, Kirilovsky D (2011) In vitro reconstitution of the cyanobacterial photoprotective mechanism mediated by the orange carotenoid protein in Synechocystis PCC 6803. Plant Cell 23(7):2631–2643CrossRefPubMedPubMedCentralGoogle Scholar
  8. Gwizdala M, Wilson A, Omairi-Nasser A, Kirilovsky D (2013) Characterization of the Synechocystis PCC 6803 fluorescence recovery protein involved in photoprotection. BBA Bioenerg 1827(3):348–354CrossRefGoogle Scholar
  9. Kerfeld CA, Sawaya MR, Brahmandam V, Cascio D, Ho KK, Trevithick-Sutton CC, Krogmann DW, Yeates TO (2003) The crystal structure of a cyanobacterial water-soluble carotenoid binding protein. Structure 11(1):55–65CrossRefPubMedGoogle Scholar
  10. Kirilovsky D (2015) Modulating energy arriving at photochemical reaction centers: orange carotenoid protein-related photoprotection and state transitions. Photosynth Res 126(1):3–17CrossRefPubMedGoogle Scholar
  11. Kirilovsky D, Kerfeld CA (2016) Cyanobacterial photoprotection by the orange carotenoid protein. Nat Plants 2:16180CrossRefPubMedGoogle Scholar
  12. Kuzminov FI, Karapetyan NV, Rakhimberdieva MG, Elanskay IV, Gorbunov MY, Fadeev VV (2012) Investigation of OCP-triggered dissipation of excitation energy in PSI/PSII-less Synechocystis sp. PCC 6803 mutant using non-linear laser fluorimetry. BBA Bioenerg 1817(7):1012–1021CrossRefGoogle Scholar
  13. Kuzminov FI, Bolychevtseva YV, Elanskaya IV, Karapetyan NV (2014) Effect of APCD and APCF subunits depletion on phycobilisome fluorescence of the cyanobacterium Synechocystis PCC 6803. J Photochem Photobiol B 133:153–160CrossRefPubMedGoogle Scholar
  14. Leverenz RL, Sutter M, Wilson A, Gupta S, Thurotte A, de Carbon CB et al. (2015) A 12 Å carotenoid translocation in a photoswitch associated with cyanobacterial photoprotection. Science 348(6242):1463–1466CrossRefPubMedGoogle Scholar
  15. Liu H, Zhang H, Niedzwiedzki DM, Prado M, He G, Gross ML, Blankenship RE (2013) Phycobilisomes supply excitations to both photosystems in a megacomplex in cyanobacteria. Science 342(6162): 1104–1107CrossRefPubMedPubMedCentralGoogle Scholar
  16. Maksimov EG, Schmitt FJ, Shirshin EA, Svirin MD, Elanskaya IV, Friedrich T et al. (2014) The time course of non-photochemical quenching in phycobilisomes of Synechocystis sp. PCC6803 as revealed by picosecond time-resolved fluorimetry. BBA Bioenerg 1837(9):1540–1547CrossRefGoogle Scholar
  17. Maksimov EG, Shirshin EA, Sluchanko NN, Zlenko DV, Parshina EY, Tsoraev GV et al. (2015a) The signaling state of orange carotenoid protein. Biophys J 109(3):595–607CrossRefPubMedPubMedCentralGoogle Scholar
  18. Maksimov EG, Klementiev KE, Shirshin EA, Tsoraev GV, Elanskaya IV, Paschenko VZ (2015b) Features of temporal behavior of fluorescence recovery in Synechocystis sp. PCC6803. Photosynth Res 125(1–2):167–178CrossRefPubMedGoogle Scholar
  19. Maksimov EG, Moldenhauer M, Shirshin EA, Parshina EA, Sluchanko NN, Klementiev KE, Tsoraev GV, Tavraz NN, Willoweit M, Schmitt FJ, Breitenbach J, Sandmann G, Paschenko VZ, Friedrich T, Rubin AB (2016) A comparative study of three signaling forms of the orange carotenoid protein. Photosynth Res 130(1):389–401CrossRefPubMedGoogle Scholar
  20. Sedoud A, López-Igual R, Rehman A, Wilson A, Perreau F, Boulay C et al. (2014) The cyanobacterial photoactive orange carotenoid protein is an excellent singlet oxygen quencher. Plant Cell 26(4):1781–1791CrossRefPubMedPubMedCentralGoogle Scholar
  21. Sluchanko NN, Klementiev KE, Shirshin EA, Tsoraev GV, Friedrich T, Maksimov EG (2017) The purple Trp288Ala mutant of Synechocystis OCP persistently quenches phycobilisome fluorescence and tightly interacts with FRP. BBA Bioenerg 1858(1):1–11CrossRefGoogle Scholar
  22. Stadnichuk IN, Yanyushin MF, Bernat G, Zlenko DV, Krasilnikov PM, Lukashev EP, Maksimov EG, Paschenko VZ (2013) Fluorescence quenching of the phycobilisome terminal emitter LCM from the cyanobacterium Synechocystis sp. PCC 6803 detected in vivo and in vitro. J Photochem Photobiol B 125:137–145CrossRefPubMedGoogle Scholar
  23. Sutter M, Wilson A, Leverenz RL, Lopez-Igual R, Thurotte A, Salmeen AE et al. (2013) Crystal structure of the FRP and identification of the active site for modulation of OCP-mediated photoprotection in cyanobacteria. Proc Natl Acad Sci USA 110(24):10022–10027CrossRefPubMedPubMedCentralGoogle Scholar
  24. Teipel J, Koshland DE (1969) Significance of intermediary plateau regions in enzyme saturation curves. Biochemistry 8(11):4656–4663CrossRefPubMedGoogle Scholar
  25. Tian L, van Stokkum IH, Koehorst RB, Jongerius A, Kirilovsky D, van Amerongen H (2011) Site, rate, and mechanism of photoprotective quenching in cyanobacteria. J Am Chem Soc 133(45):18304–18311CrossRefPubMedGoogle Scholar
  26. Tian L, Gwizdala M, van Stokkum IH, Koehorst RB, Kirilovsky D, van Amerongen H (2012) Picosecond kinetics of light harvesting and photoprotective quenching in wild-type and mutant phycobilisomes isolated from the cyanobacterium Synechocystis PCC 6803. Biophys J 102(7):1692–1700CrossRefPubMedPubMedCentralGoogle Scholar
  27. Wilson A et al (2006) A soluble carotenoid protein involved in phycobilisome-related energy dissipation in cyanobacteria. Plant Cell 18(4):992–1007CrossRefPubMedPubMedCentralGoogle Scholar
  28. Wilson A, Punginelli C, Gall A, Bonetti C, Alexandre M, Routaboul JM et al. (2008) A photoactive carotenoid protein acting as light intensity sensor. Proc Natl Acad Sci USA 105(33):12075–12080CrossRefPubMedPubMedCentralGoogle Scholar
  29. Zhang H, Liu H, Niedzwiedzki DM, Prado M, Jiang J, Gross ML, Blankenship RE (2013) Molecular mechanism of photoactivation and structural location of the cyanobacterial orange carotenoid protein. Biochemistry 53(1):13–19CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Evgeny A. Shirshin
    • 1
    Email author
  • Elena E. Nikonova
    • 1
  • Fedor I. Kuzminov
    • 1
    • 2
  • Nikolai N. Sluchanko
    • 3
    • 4
  • Irina V. Elanskaya
    • 4
  • Maxim Y. Gorbunov
    • 2
  • Victor V. Fadeev
    • 1
  • Thomas Friedrich
    • 5
  • Eugene G. Maksimov
    • 4
  1. 1.Department of PhysicsM.V. Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Department of Marine and Coastal SciencesRutgers UniversityNew BrunswickUSA
  3. 3.A.N. Bach Institute of BiochemistryResearch Center of Biotechnology of the Russian Academy of SciencesMoscowRussia
  4. 4.Department of BiologyM.V. Lomonosov Moscow State UniversityMoscowRussia
  5. 5.Institute of Chemistry PC 14Technical University of BerlinBerlinGermany

Personalised recommendations