Estimation of photosynthesis in cyanobacteria by pulse-amplitude modulation chlorophyll fluorescence: problems and solutions

Abstract

Cyanobacteria are photosynthetic prokaryotes and widely used for photosynthetic research as model organisms. Partly due to their prokaryotic nature, however, estimation of photosynthesis by chlorophyll fluorescence measurements is sometimes problematic in cyanobacteria. For example, plastoquinone pool is reduced in the dark-acclimated samples in many cyanobacterial species so that conventional protocol developed for land plants cannot be directly applied for cyanobacteria. Even for the estimation of the simplest chlorophyll fluorescence parameter, F v/F m, some additional protocol such as addition of DCMU or illumination of weak blue light is necessary. In this review, those problems in the measurements of chlorophyll fluorescence in cyanobacteria are introduced, and solutions to those problems are given.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

DCMU:

3-(3, 4-Dichlorophenyl)-1, 1-dimethylurea

F m :

Maximum fluorescence determined under oxidized plastoquinone pool conditions

F m′ :

Maximum fluorescence under reduced plastoquinone pool conditions

F 0 :

Minimum fluorescence under oxidized plastoquinone pool conditions

F 0′ :

Minimum fluorescence under reduced plastoquinone pool conditions

F s :

Stable fluorescence level

F v/F m :

Chlorophyll fluorescence parameter indicating the maximum quantum yield of Photosystem II calculated as (F m − F 0)/F m

NDH:

NAD(P)H dehydrogenase

OCP:

Orange carotenoid protein

PFD:

Photon flux density

PQ:

Plastoquinone

PS:

Photosystem

References

  1. Acuña AM, Snellenburg JJ, Gwizdala M, Kirilovsky D, van Grondelle R, van Stokkum IHM (2016) Resolving contribution of the uncoupled phycobilisomes to cyanobacterial pulse-amplitude modulated (PAM) fluorometry signals. Photosynth Res 127:91–102

    Article  PubMed  Google Scholar 

  2. Allahverdiyeva Y, Mustila H, Ermakova M, Bersanini L, Richaud P, Ajlani G, Battchikova N, Cournac L, Aro E-M (2013) Flavodiiron proteins Flv1 and Flv3 enable cyanobacterial growth and photosynthesis under fluctuating light. PNAS 110:4111–4116

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Allen MM, Smith AJ (1969) Nitrogen chlorosis in blue-green algae. Arch Microbiol 69:114–120

    CAS  Google Scholar 

  4. Aoki M, Katoh S (1982) Oxidation and reduction of plastoquinone by photosynthetic and respiratory electron transport in cyanobacterium Synechococcus sp. Biochim Biophys Acta 682:307–314

    CAS  Article  Google Scholar 

  5. Bailey S, Mann NH, Robinson C, Scanlan DJ (2005) The occurrence of rapidly reversible non-photochemical quenching of chlorophyll a fluorescence in cyanobacteria. FEBS Lett 579:275–280

    CAS  Article  PubMed  Google Scholar 

  6. Bailey S, Melis A, Mackey KRM, Cardol P, Finazzi G, van Dijken G, Berg GM, Arrigo K, Shrager J, Grossman A (2008) Alternative photosynthetic electron flow to oxygen in marine Synechococcus. Biochim Biophys Acta 1777:269–276

    CAS  Article  PubMed  Google Scholar 

  7. Battchikova N, Eisenhut M, Aro EM (2011) Cyanobacterial NDH-1 complexes: novel insights and remaining puzzles. Biochim Biophys Acta 1807:935–944

    CAS  Article  PubMed  Google Scholar 

  8. Blot N, Wu X-J, Thomas J-C, Zhang J, Garczarek L, Böhm S, Tu J-M, Zhou M, Plöscher M, Eichacker L, Partensky F, Scheer H, Zhao K-H (2009) Phycourobilin in trichromatic phycocyanin from oceanic cyanobacteria is formed post-translationally by a phycoerythrobilin lyase-isomerase. J Biol Chem 284:9290–2928

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Campbell D, Öquist G (1996) Predicting light acclimation in cyanobacteria from nonphotochemical quenching of photosystem II fluorescence, which reflects state transitions in these organisms. Plant Physiol 111:1293–1298

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Campbell D, Hurry V, Clarke AK, Gustafsson P, Öquist G (1998) Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiol Mol Biol Rev 62:667–683

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Cooley JW, Vermaas WFJ (2001) Succinate dehydrogenase and other respiratory pathways in thylakoid membranes of Synechocystis sp. strain PCC 6803: capacity comparisons and physiological function. J Bacteriol 183:4251–4258

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. de Vitry C, Ouyang Y, Finazzi G, Wollman F-A, Kallas T (2004) The chloroplast Rieske iron-sulfur protein at the crossroad of electron transport and signal transduction. J Biol Chem 279:44621–44627

    Article  PubMed  Google Scholar 

  13. El Bissati K, Kirilovsky D (2001) Regulation of psbA and psaE expression by light quality in Synechocystis species PCC 6803. A redox control mechanism. Plant Physiol 125:1988–2000

    CAS  Article  PubMed  Google Scholar 

  14. El Bissati K, Delphin E, Murata N, Etienne A-L, Kirilovsky D (2000) Photosystem II fluorescence quenching in the cyanobacterium Synechocystis PCC 6803: involvement of two different mechanisms. Biochim Biophys Acta 1457:229–242

    CAS  Article  PubMed  Google Scholar 

  15. Ermakova M, Huokko T, Richaud P, Bersanini L, Howe CJ, Lea-Smith DJ, Peltier G, Allahverdiyeva Y (2016) Distinguishing the roles of thylakoid respiratory terminal oxidases in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol 171:1307–1319

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Fujita Y (1997) A study on the dynamic features of photosystem stoichiometry: accomplishments and problems for future studies. Photosynth Res 53:83–93

    CAS  Article  Google Scholar 

  17. Genty B, Wonders J, Baker NR (1990) Non-photochemical quenching of Fo in leaves is emission wavelength dependent: consequences for quenching analysis and its interpretation. Photosynth Res 26:133–139

    CAS  Article  PubMed  Google Scholar 

  18. Govindjee (1995) Sixty-three years since Kautsky: chlorophyll a fluorescence. Aust J Plant Physiol 22:131–160

    CAS  Article  Google Scholar 

  19. Grossman AR, Schaefer MR, Chiang GG, Collier JL (1993) The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol Rev 57:725–749

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hayashi R, Shimakawa G, Shaku K, Shimizu S, Akimoto S, Yamamoto H, Amako K, Sugimoto T, Tamoi M, Makino A and Miyake C (2014) O2-dependent large electron flow functioned as an electron sink, replacing the steady-state electron flux in photosynthesis in the cyanobacterium Synechocystis sp. PCC 6803, but not in the cyanobacterium Synechococcus sp. PCC 7942. Biosci Biotech Biochem 78:384–393

    CAS  Article  Google Scholar 

  21. Kaňa R, Kotabová E, Komárek O, Šedivá B, Papageorgiou GC, Prášil O (2012). The slow S to M fluorescence rise in cyanobacteria is due to a state 2 to state 1 transition. Biochim Biophys Acta 1817:1237–1247

    Article  PubMed  Google Scholar 

  22. Kirilovsky D (2007) Photoprotection in cyanobacteria: the orange carotenoid protein (OCP)-related non-photochemical-quenching mechanism. Photosynth Res 93:7–16

    CAS  Article  PubMed  Google Scholar 

  23. Kitajima M, Butler WL (1975) Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. Biochim Biophys Acta 376:105–115

    CAS  Article  PubMed  Google Scholar 

  24. Krause GH, Weis E (1984) Chlorophyll fluorescence as a tool in plant physiology. II. Interpretation of fluorescence signals. Photosynth Res 5:139–157

    CAS  Article  PubMed  Google Scholar 

  25. Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349

    CAS  Article  Google Scholar 

  26. Kühl M, Chen M, Ralph PJ, Schreiber U, Larkum AW (2005) Ecology: a niche for cyanobacteria containing chlorophyll d. Nature 433:820–820

    Article  PubMed  Google Scholar 

  27. Lea-Smith DJ, Ross N, Zori M, Bendall DS, Dennis JS, Scott SA, Smith AG, Howe CJ (2013) Thylakoid terminal oxidase are essential for the cyanobacterium Synechocystis sp. PCC 6803 to survive rapidly changing light intensities. Plant Physiol 162:484–495

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Li H, Sherman LA (2002) Characterization of Synechocystis sp. strain PCC 6803 and ∆nbl mutants under nitrogen-deficient conditions. Arch Microbiol 178:256–266

    CAS  Article  PubMed  Google Scholar 

  29. Mimuro M, Kikuchi H (2003) Antenna systems and energy transfer in cyanophyta and rhodophyta. In: Green BR, Parson WW (eds) Light-harvesting antennas in photosynthesis. Kluwer, Dordrecht, pp 281–306

    Chapter  Google Scholar 

  30. Misumi M, Katoh H, Tomo T, Sonoike K (2016) Relationship between photochemical quenching and non-photochemical quenching in six species of cyanobacteria reveals species difference in redox state and species commonality in energy dissipation. Plant Cell Physiol 57:1510–1517

    CAS  PubMed  Google Scholar 

  31. Mullineaux CW, Allen JF (1986) The state 2 transition in the cyanobacterium Synechococcus 6301 can be driven by respiratory electron flow into the plastoquinone pool. FEBS Lett 205:155–160

    CAS  Article  Google Scholar 

  32. Mullineaux CW, Emlyn-Jones D (2005) State transitions: an example of acclimation to low-light stress. J Exp Bot 56:389–393

    CAS  Article  PubMed  Google Scholar 

  33. Mullineaux CW, Tobin MJ, Jones GR (1997) Mobility of photosynthetic complexes in thylakoid membranes. Nature 390:421–424

    CAS  Article  Google Scholar 

  34. Munekage Y, Hashimoto M, Miyake C, Tomizawa K, Endo T, Tasaka M, Shikanai T (2004) Cyclic electron floe around photosystem I is essential for photosynthesis. Nature 429:579–582

    CAS  Article  PubMed  Google Scholar 

  35. Ogawa T, Sonoike K (2015) Dissection of respiration and photosynthesis in the cyanobacterium Synechocystis sp. PCC 6803 by the analysis of chlorophyll fluorescence. J Photochem Photobiol B 144:61–67

    CAS  Article  PubMed  Google Scholar 

  36. Ogawa T, Sonoike K (2016) Effects of bleaching by nitrogen deficiency on the quantum yield of photosystem II in Synechocystis sp. PCC 6803 revealed by chlorophyll fluorescence measurement. Plant Cell Physiol 57:558–567

    CAS  Article  PubMed  Google Scholar 

  37. Ogawa T, Harada T, Ozaki H, Sonoike K (2013) Disruption of the ndhF1 gene affects chlorophyll fluorescence through state transition in the cyanobacterium Synechocystis sp. PCC 6803, resulting in apparent high efficiency of photosynthesis. Plant Cell Physiol 54:1164–1171

    CAS  Article  PubMed  Google Scholar 

  38. Oxborough K, Baker NR (1997) Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components-calculation of qP and Fv′/Fm′ without measuring Fo′. Photosynth Res 54:135–142

    CAS  Article  Google Scholar 

  39. Ozaki H, Sonoike K (2009) Quantitative analysis of the relationship between induction kinetics of chlorophyll fluorescence and function of genes in the cyanobacterium Synechocystis sp. PCC 6803. Photosynth Res 101:47–58

    CAS  Article  PubMed  Google Scholar 

  40. Ozaki H, Ikeuchi M, Ogawa T, Fukuzawa H, Sonoike K (2007) Large scale analysis of chlorophyll fluorescence kinetics in Synechocystis sp. PCC 6803: identification of the factors involved in the modulation of photosystem stoichiometry. Plant Cell Physiol 48:451–458

    CAS  Article  PubMed  Google Scholar 

  41. Peschek GA, Schmetterer G (1982) Evidence for plastoquinol-cytochrome f/b 563 reductase as a common electron donor to P700 and cytochrome oxidase in cyanobacteria. Biochim Biophys Res Commun 108:1188–1195

    CAS  Article  Google Scholar 

  42. Pfündel E (1998) Estimating the contribution of photosystem I to total leaf chlorophyll fluorescence. Photosynth Res 56:185–195

    Article  Google Scholar 

  43. Pfündel EE, Klughammer C, Meister A, Cerovic ZG (2013) Deriving fluorometer-specific values of relative PSI fluorescence intensity from quenching of F(0) fluorescence in leaves of Arabidopsis thaliana and Zea mays. Photosynth Res 114:189–206

    Article  PubMed  Google Scholar 

  44. Quick WP, Stitt M (1989) An examination of factors contributing to non-photochemical quenching of chlorophyll fluorescence in barley leaves. Biochim Biophys Acta 977:287–296

    CAS  Article  Google Scholar 

  45. Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62

    CAS  Article  PubMed  Google Scholar 

  46. Schreiber U, Endo T, Mi H, Asada K (1995) Quenching analysis of chlorophyll fluorescence by the saturation pulse method: particular aspects relating to the study of eukaryotic algae and cyanobacteria. Plant Cell Physiol 36:873–882

    CAS  Article  Google Scholar 

  47. Schuurmans RM, van Alphen P, Schuurmans JM, Matthijs HCP, Hellingwerf KJ (2015) Comparison of the photosynthetic yield of cyanobacteria and green algae: different methods give different answers. PLoS ONE 10:e0139061

    Article  PubMed  PubMed Central  Google Scholar 

  48. Shimakawa G, Shaku K, Nishi A, Hayashi R, Yamamoto H, Sakamoto K, Makino A, Miyake C (2015) FLAVODIIRON2 and FLAVODIIRON4 proteins mediate an oxygen-dependent alternative electron flow in Synechocystis sp. PCC 6803 under CO2-limited conditions. Plant Physiol 167:472–480

    CAS  Article  PubMed  Google Scholar 

  49. Sonoike K (2011) Photoinhibition of photosystem I. Physiol Plant 142:56–64

    CAS  Article  PubMed  Google Scholar 

  50. Sonoike K, Hihara Y, Ikeuchi M (2001) Physiological significance of the regulation of photosystem stoichiometry upon high light acclimation of Synechocystis sp. PCC 6803. Plant Cell Physiol 42:379–384

    CAS  Article  PubMed  Google Scholar 

  51. Zhang P, Allahverdiyeva Y, Eisenhut M, Aro EM (2009) Flavodiiron proteins in oxygenic photosynthetic organisms: photoprotection of photosystem II by Flv2 and Flv4 in Synechocystis sp. PCC 6803. PLoS ONE 4:e5331

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS Grant-in-Aid for Scientific Research on Innovative Areas (No. 16H06552 and No. 16H06553 to K.S.) and Grant-in-Aid for Scientific Research (B) (No. 16H04809 to K.S.), as well as by Grant-in-Aid for JSPS Research Fellow (No. 26-7221 to T.O.). We thank Dr. Yukako Hihara for the critical reading of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kintake Sonoike.

Additional information

Takako Ogawa and Masahiro Misumi have contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ogawa, T., Misumi, M. & Sonoike, K. Estimation of photosynthesis in cyanobacteria by pulse-amplitude modulation chlorophyll fluorescence: problems and solutions. Photosynth Res 133, 63–73 (2017). https://doi.org/10.1007/s11120-017-0367-x

Download citation

Keywords

  • Chlorophyll fluorescence
  • Cyanobacteria
  • Nonphotochemical quenching
  • Pulse-amplitude modulation (PAM) fluorometry
  • State transition