Photosynthesis Research

, Volume 134, Issue 3, pp 329–342 | Cite as

Photosynthetic fuel for heterologous enzymes: the role of electron carrier proteins

  • Silas Busck Mellor
  • Konstantinos Vavitsas
  • Agnieszka Zygadlo Nielsen
  • Poul Erik Jensen


Plants, cyanobacteria, and algae generate a surplus of redox power through photosynthesis, which makes them attractive for biotechnological exploitations. While central metabolism consumes most of the energy, pathways introduced through metabolic engineering can also tap into this source of reducing power. Recent work on the metabolic engineering of photosynthetic organisms has shown that the electron carriers such as ferredoxin and flavodoxin can be used to couple heterologous enzymes to photosynthetic reducing power. Because these proteins have a plethora of interaction partners and rely on electrostatically steered complex formation, they form productive electron transfer complexes with non-native enzymes. A handful of examples demonstrate channeling of photosynthetic electrons to drive the activity of heterologous enzymes, and these focus mainly on hydrogenases and cytochrome P450s. However, competition from native pathways and inefficient electron transfer rates present major obstacles, which limit the productivity of heterologous reactions coupled to photosynthesis. We discuss specific approaches to address these bottlenecks and ensure high productivity of such enzymes in a photosynthetic context.


Ferredoxin Flavodoxin Synthetic biology Metabolic engineering Cytochrome P450 Photosynthesis 


  1. Abdel-Ghany SE (2009) Contribution of plastocyanin isoforms to photosynthesis and copper homeostasis in Arabidopsis thaliana grown at different copper regimes. Planta 229:767–779. doi: 10.1007/s00425-008-0869-z PubMedCrossRefGoogle Scholar
  2. Ago H, Adachi H, Umena Y et al (2016) Novel features of eukaryotic photosystem II revealed by its crystal structure analysis from a red alga. J Biol Chem. doi: 10.1074/jbc.M115.711689 PubMedPubMedCentralGoogle Scholar
  3. Antal TK, Kovalenko IB, Rubin AB, Tyystjärvi E (2013) Photosynthesis-related quantities for education and modeling. Photosynth Res 117:1–30. doi: 10.1007/s11120-013-9945-8 PubMedCrossRefGoogle Scholar
  4. Atkinson JT, Campbell I, Bennett GN, Silberg JJ (2016) Cellular assays for ferredoxins: a strategy for understanding electron flow through protein carriers that link metabolic pathways. Biochemistry. doi: 10.1021/acs.biochem.6b00831 PubMedGoogle Scholar
  5. Backhausen JE, Kitzmann C, Horton P, Scheibe R (2000) Electron acceptors in isolated intact spinach chloroplasts act hierarchically to prevent over-reduction and competition for electrons. Photosynth Res 64:1–13. doi: 10.1023/A:1026523809147 PubMedCrossRefGoogle Scholar
  6. Baebprasert W, Jantaro S, Khetkorn W et al (2011) Increased H2 production in the cyanobacterium Synechocystis sp. strain PCC 6803 by redirecting the electron supply via genetic engineering of the nitrate assimilation pathway. Metab Eng 13:610–616. doi: 10.1016/j.ymben.2011.07.004 PubMedCrossRefGoogle Scholar
  7. Baker NA, Sept D, Joseph S et al (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci 98:10037–10041. doi: 10.1073/pnas.181342398 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Berepiki A, Hitchcock A, Moore CM, Bibby TS (2016) Tapping the unused potential of photosynthesis with a heterologous electron sink. ACS Synth Biol. doi: 10.1021/acssynbio.6b00100 PubMedGoogle Scholar
  9. Berry S, Schneider D, Vermaas WFJ, Rögner M (2002) Electron transport routes in whole cells of Synechocystis sp. strain PCC 6803: the role of the cytochrome bd-type oxidase. BioChemistry 41:3422–3429. doi: 10.1021/bi011683d PubMedCrossRefGoogle Scholar
  10. Berthold DA, Stenmark P (2003) Membrane-bound diiron carboxylate proteins. Annu Rev Plant Biol 54:497–517. doi: 10.1146/annurev.arplant.54.031902.134915 PubMedCrossRefGoogle Scholar
  11. Bottin H, Lagoutte B (1992) Ferrodoxin and flavodoxin from the cyanobacterium Synechocystis sp. PCC 6803. Biochim Biophys Acta 1101:48–56. doi: 10.1016/0167-4838(92)90465-P PubMedCrossRefGoogle Scholar
  12. Brettel K (1997) Electron transfer and arrangement of the redox cofactors in photosystem I. Biochim Biophys Acta 1318:322–373. doi: 10.1016/S0005-2728(96)00112-0 CrossRefGoogle Scholar
  13. Buchanan BB, Balmer Y (2005) Redox regulation: a broadening horizon. Annu Rev Plant Biol 56:187–220. doi: 10.1146/annurev.arplant.56.032604.144246 PubMedCrossRefGoogle Scholar
  14. Caetano-Anollés G, Kim HS, Mittenthal JE (2007) The origin of modern metabolic networks inferred from phylogenomic analysis of protein architecture. Proc Natl Acad Sci USA 104:9358–9363. doi: 10.1073/pnas.0701214104 PubMedPubMedCentralCrossRefGoogle Scholar
  15. Cammack R, Rao KK, Bargeron CP et al (1977) Midpoint redox potentials of plant and algal ferredoxins. Biochem J 168:205–209PubMedPubMedCentralCrossRefGoogle Scholar
  16. Carol P, Kuntz M (2001) A plastid terminal oxidase comes to light: implications for carotenoid biosynthesis and chlororespiration. Trends Plant Sci 6:31–36. doi: 10.1016/S1360-1385(00)01811-2 PubMedCrossRefGoogle Scholar
  17. Cassier-Chauvat C, Chauvat F (2014) Function and regulation of ferredoxins in the cyanobacterium, Synechocystis PCC6803: recent advances. Life 4:666–680. doi: 10.3390/life4040666 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Champigny ML (1995) Integration of photosynthetic carbon and nitrogen metabolism in higher plants. Photosynth Res 46:117–127. doi: 10.1007/BF00020422 PubMedCrossRefGoogle Scholar
  19. Cho YS, Wang QJ, Krogmann D, Whitmarsh J (1999) Extinction coefficients and midpoint potentials of cytochrome c6 from the cyanobacteria Arthrospira maxima, Microcystis aeruginosa, and Synechocystis 6803. Biochim Biophys Acta 1413:92–97. doi: 10.1016/S0005-2736(99)00124-8 PubMedCrossRefGoogle Scholar
  20. Clarke AK, Campbell D (1996) Inactivation of the petE Gene for plastocyanin lowers photosynthetic capacity and exacerbates chilling-induced photoinhibition in the cyanobacterium Synechococcus. Plant Physiol 112:1551–1561. doi: 10.1104/pp.112.4.1551 PubMedPubMedCentralCrossRefGoogle Scholar
  21. Crowley PB, Carrondo MA (2004) The architecture of the binding site in redox protein complexes: implications for fast dissociation. Proteins Struct Funct Genet 55:603–612. doi: 10.1002/prot.20043 PubMedCrossRefGoogle Scholar
  22. Crowley PB, Ubbink M (2003) Close encounters of the transient kind: protein interactions in the photosynthetic redox chain investigated by NMR spectroscopy. Acc Chem Res 36:723–730. doi: 10.1021/ar0200955 PubMedCrossRefGoogle Scholar
  23. Dai S (2000) Redox signaling in chloroplasts: cleavage of disulfides by an iron-sulfur cluster. Science 287:655–658. doi: 10.1126/science.287.5453.655 PubMedCrossRefGoogle Scholar
  24. Dalby PA (2014) The role of directed protein evolution in synthetic biology. Synth Biol 1:375. doi: 10.1039/9781849737845-00079 Google Scholar
  25. Dammeyer T, Frankenberg-Dinkel N (2008) Function and distribution of bilin biosynthesis enzymes in photosynthetic organisms. Photochemical 7:1121–1130. doi: 10.1039/b807209b Google Scholar
  26. Das A, Sligar SG (2009) Modulation of the cytochrome P450 reductase redox potential by the phospholipid bilayer. BioChemistry 48:12104–12112. doi: 10.1021/bi9011435 PubMedPubMedCentralCrossRefGoogle Scholar
  27. De La Rosa MA, Navarro JA, Díaz-Quintana A et al (2002) An evolutionary analysis of the reaction mechanisms of photosystem I reduction by cytochrome c6 and plastocyanin. Bioelectrochemistry 55:41–45. doi: 10.1016/S1567-5394(01)00136-0 PubMedCrossRefGoogle Scholar
  28. Diner BA, Rappaport F (2002) Structure, dynamics, and energetics of the primary photochemistry of photosystem II of oxygenic photosynthesis. Annu Rev Plant Biol 53:551–580. doi: 10.1146/annurev.arplant.53.100301.135238 PubMedCrossRefGoogle Scholar
  29. Dubini A, Ghirardi ML (2014) Engineering photosynthetic organisms for the production of biohydrogen. Photosynth Res. doi: 10.1007/s11120-014-9991-x PubMedPubMedCentralGoogle Scholar
  30. Eilenberg H, Weiner I, Ben-Zvi O et al (2016) The dual effect of a ferredoxin-hydrogenase fusion protein in vivo: successful divergence of the photosynthetic electron flux towards hydrogen production and elevated oxygen tolerance. Biotechnol Biofuels 9:182. doi: 10.1186/s13068-016-0601-3 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Erdrich P, Knoop H, Steuer R, Klamt S (2014) Cyanobacterial biofuels: new insights and strain design strategies revealed by computational modeling. Microb Cell Fact 13:128. doi: 10.1186/s12934-014-0128-x PubMedPubMedCentralCrossRefGoogle Scholar
  32. Fasan R (2012) Tuning P450 enzymes as oxidation catalysts. ACS Catal 2:647–666. doi: 10.1021/cs300001x CrossRefGoogle Scholar
  33. Fixen KR, Zheng Y, Harris DF et al (2016) Light-driven carbon dioxide reduction to methane by nitrogenase in a photosynthetic bacterium. Proc Natl Acad Sci 113:10163–10167. doi: 10.1073/pnas.1611043113 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Fuentes P, Zhou F, Erban A et al (2016) A new synthetic biology approach allows transfer of an entire metabolic pathway from a medicinal plant to a biomass crop. Elife 5:1–26. doi: 10.7554/eLife.13664 CrossRefGoogle Scholar
  35. Furukawa Y, Morishima I (2001) The role of water molecules in the association of cytochrome P450cam with putidaredoxin. An osmotic pressure study. J Biol Chem 276:12983–12990. doi: 10.1074/jbc.M010217200 PubMedCrossRefGoogle Scholar
  36. Gangl D, Zedler JAZ, Włodarczyk A et al (2015) Expression and membrane-targeting of an active plant cytochrome P450 in the chloroplast of the green alga Chlamydomonas reinhardtii. Phytochemistry 110:22–28. doi: 10.1016/j.phytochem.2014.12.006 PubMedCrossRefGoogle Scholar
  37. Gao Z, Zhao H, Li Z et al (2012) Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria. Energy Environ Sci 5:9857–9865. doi: 10.1039/c2ee22675h CrossRefGoogle Scholar
  38. Gao X, Gao F, Liu D et al (2016) Engineering the methylerythritol phosphate pathway in cyanobacteria for photosynthetic isoprene production from CO2. Energy Environ Sci. doi: 10.1039/C5EE03102H Google Scholar
  39. Ghirardi ML, Posewitz MC, Maness P-C et al (2007) Hydrogenases and hydrogen photoproduction in oxygenic photosynthetic organisms. Annu Rev Plant Biol 58:71–91. doi: 10.1146/annurev.arplant.58.032806.103848 PubMedCrossRefGoogle Scholar
  40. Girhard M, Bakkes PJ, Mahmoud O, Urlacher VB (2015) P450 biotechnology. In: de Montellano PRO (ed) Cytochrome. Springer, Cham, pp 451–520Google Scholar
  41. Gnanasekaran T, Vavitsas K, Andersen-Ranberg J et al (2015) Heterologous expression of the isopimaric acid pathway in Nicotiana benthamiana and the effect of N-terminal modifications of the involved cytochrome P450 enzyme. J Biol Eng 9:24. doi: 10.1186/s13036-015-0022-z PubMedPubMedCentralCrossRefGoogle Scholar
  42. Gnanasekaran T, Karcher D, Nielsen AZ et al (2016) Transfer of the cytochrome P450-dependent dhurrin pathway from Sorghum bicolor into Nicotiana tabacum chloroplasts for light-driven synthesis. J Exp Bot 67:2495–2506. doi: 10.1093/jxb/erw067 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Goñi G, Serrano A, Frago S et al (2008) Flavodoxin-mediated electron transfer from photosystem I to ferredoxin-NADP+ reductase in Anabaena: role of flavodoxin hydrophobic residues in protein–protein interactions. BioChemistry 47:1207–1217. doi: 10.1021/bi7017392 PubMedCrossRefGoogle Scholar
  44. Goñi G, Herguedas B, Hervás M et al (2009) Flavodoxin: a compromise between efficiency and versatility in the electron transfer from photosystem i to ferredoxin-NADP(+) reductase. Biochim Biophys Acta 1787:144–154. doi: 10.1016/j.bbabio.2008.12.006 PubMedCrossRefGoogle Scholar
  45. Goss T, Hanke G (2014) The end of the line: can ferredoxin and ferredoxin NADP(H) oxidoreductase determine the fate of photosynthetic electrons? Curr Protein Pept Sci 15:385–393. doi: 10.2174/1389203715666140327113733 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Gross EL (1993) Plastocyanin: structure and function. Photosynth Res 37:103–116. doi: 10.1007/BF02187469 PubMedCrossRefGoogle Scholar
  47. Gupta R, He Z, Luan S (2002) Functional relationship of cytochrome c(6) and plastocyanin in Arabidopsis. Nature 417:567–571. doi: 10.1038/417567a PubMedCrossRefGoogle Scholar
  48. Hamdane D, Xia C, Im SC et al (2009) Structure and function of an NADPH-cytochrome P450 oxidoreductase in an open conformation capable of reducing cytochrome P450. J Biol Chem 284:11374–11384. doi: 10.1074/jbc.M807868200 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Hanke G, Mulo P (2013) Plant type ferredoxins and ferredoxin-dependent metabolism. Plant Cell Environ 36:1071–1084. doi: 10.1111/pce.12046 PubMedCrossRefGoogle Scholar
  50. Hanke GT, Kimata-Ariga Y, Taniguchi I, Hase T (2004) A post genomic characterization of Arabidopsis ferredoxins. Plant Physiol 134:255–264. doi: 10.1104/pp.103.032755 PubMedPubMedCentralCrossRefGoogle Scholar
  51. Hanke GT, Satomi Y, Shinmura K et al (2011) A screen for potential ferredoxin electron transfer partners uncovers new, redox dependent interactions. Biochim Biophys Acta 1814:366–374. doi: 10.1016/j.bbapap.2010.09.011 PubMedCrossRefGoogle Scholar
  52. Hirakawa H, Nagamune T (2010) Molecular assembly of P450 with ferredoxin and ferredoxin reductase by fusion to PCNA. ChemBioChem 11:1517–1520. doi: 10.1002/cbic.201000226 PubMedCrossRefGoogle Scholar
  53. Hirasawa M, Tripathy JN, Somasundaram R et al (2009) The interaction of spinach nitrite reductase with ferredoxin: a site-directed mutation study. Mol Plant 2:407–415. doi: 10.1093/mp/ssn098 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Holden HM, Jacobson BL, Hurley JK et al (1994) Structure-function studies of [2Fe-2S] ferredoxins. J Bioenerg Biomembr 26:67–88. doi: 10.1007/BF00763220 PubMedCrossRefGoogle Scholar
  55. Holfgrefe S, Backhausen JE, Kitzmann C, Scheibe R (1997) Regulation of steady-state photosynthesis in isolated intact chloroplasts under constant light: responses of carbon fluxes, metabolite pools and enzyme-activation states to changes of electron pressure. Plant Cell Physiol 38:1207–1216. doi: 10.1093/oxfordjournals.pcp.a029107 CrossRefGoogle Scholar
  56. Hoover DM, Drennan CL, Metzger a L et al (1999) Comparisons of wild-type and mutant flavodoxins from Anacystis nidulans. Structural determinants of the redox potentials. J Mol Biol 294:725–743. doi: 10.1006/jmbi.1999.3152 PubMedCrossRefGoogle Scholar
  57. Howe CJ, Schlarb-Ridley BG, Wastl J et al (2006) The novel cytochrome c6 of chloroplasts: a case of evolutionary bricolage? J Exp Bot 57:13–22. doi: 10.1093/jxb/erj023 PubMedCrossRefGoogle Scholar
  58. Hurley JK, Tollin G, Medina M, Carlos G-M (2006) Electron transfer from ferredoxin and flavodoxin to ferredoxin:NADP+ reductase. In: Photosystem I: the light-driven plastocyanin:ferredoxin oxidoreductase. Springer, Dordrecht, pp 455–476Google Scholar
  59. Iwai M, Takizawa K, Tokutsu R et al (2010) Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis. Nature 464:1210–1213. doi: 10.1038/nature08885 PubMedCrossRefGoogle Scholar
  60. Jensen K, Jensen PE, Møller BL (2011) Light-driven cytochrome P450 hydroxylations. ACS Chem Biol 6:533–539. doi: 10.1021/cb100393j PubMedCrossRefGoogle Scholar
  61. Jensen K, Johnston JB, Montellano PRO, Møller BL (2012) Photosystem I from plants as a bacterial cytochrome P450 surrogate electron donor: terminal hydroxylation of branched hydrocarbon chains. Biotechnol Lett 34:239–245. doi: 10.1007/s10529-011-0768-4 PubMedCrossRefGoogle Scholar
  62. Karlusich JJP, Lodeyro AF, Carrillo N (2014) The long goodbye: the rise and fall of flavodoxin during plant evolution. J Exp Bot 65:5161–5178. doi: 10.1093/jxb/eru273 CrossRefGoogle Scholar
  63. Kastritis PL, Moal IH, Hwang H et al (2011) A structure-based benchmark for protein-protein binding affinity. Protein Sci 20:482–491. doi: 10.1002/pro.580 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Kerfeld CA, Krogmann DW (1998) Photosynthetic cytochromes c in cyanobacteria, algae, and plants. Annu Rev Plant Physiol 49:397–425. doi: 10.1146/annurev.arplant.49.1.397 CrossRefGoogle Scholar
  65. Kim J, DellaPenna D (2006) Defining the primary route for lutein synthesis in plants: the role of Arabidopsis carotenoid beta-ring hydroxylase CYP97A3. Proc Natl Acad Sci USA 103:3474–3479. doi: 10.1073/pnas.0511207103 PubMedPubMedCentralCrossRefGoogle Scholar
  66. Kim J-E, Cheng KM, Craft NE et al (2010) Over-expression of Arabidopsis thaliana carotenoid hydroxylases individually and in combination with a β-carotene ketolase provides insight into in vivo functions. Phytochemistry 71:168–178. doi: 10.1016/j.phytochem.2009.10.011 PubMedCrossRefGoogle Scholar
  67. Kinoshita M, yaen Kim J, Kume S et al (2015) Physicochemical nature of interfaces controlling ferredoxin NADP+ reductase activity through its interprotein interactions with ferredoxin. Biochim Biophys Acta 1847:1200–1211. doi: 10.1016/j.bbabio.2015.05.023 PubMedCrossRefGoogle Scholar
  68. Knaff DB, Hirasawa M (1991) Ferredoxin-dependent chloroplast enzymes. Biochim Biophys Acta 1056:93–125. doi: 10.1016/S0005-2728(05)80277-4 PubMedCrossRefGoogle Scholar
  69. Köninger K, Gómez Baraibar Á, Mügge C et al (2016) Recombinant cyanobacteria for the asymmetric reduction of C=C bonds fueled by the biocatalytic oxidation of water. Angew Chem Int Ed 55:5582–5585. doi: 10.1002/anie.201601200 CrossRefGoogle Scholar
  70. Kramer DM, Evans JR (2011) The Importance of energy balance in improving photosynthetic productivity. Plant Physiol 155:70–78. doi: 10.1104/pp.110.166652 PubMedCrossRefGoogle Scholar
  71. Ksenzhek OS, Petrova SA, Kolodyazhny M V. (1977) Electrochemical properties of some redox indicators. Bioelectrochem Bioenerg 4:346–357. doi: 10.1016/0302-4598(77)80036-6 CrossRefGoogle Scholar
  72. Lacour T, Ohkawa H (1999) Engineering and biochemical characterization of the rat microsomal cytochrome P4501A1 fused to ferredoxin and ferredoxin–NADP+ reductase from plant chloroplasts. Biochim Biophys Acta 1433:87–102. doi: 10.1016/S0167-4838(99)00154-5 PubMedCrossRefGoogle Scholar
  73. Larom S, Salama F, Schuster G, Adir N (2010) Engineering of an alternative electron transfer path in photosystem II. Proc Natl Acad Sci USA 107:9650–9655. doi: 10.1073/pnas.1000187107 PubMedPubMedCentralCrossRefGoogle Scholar
  74. Larom S, Kallmann D, Saper G et al (2015) The photosystem II D1-K238E mutation enhances electrical current production using cyanobacterial thylakoid membranes in a bio-photoelectrochemical cell. Photosynth Res 126:161–169. doi: 10.1007/s11120-015-0075-3 PubMedCrossRefGoogle Scholar
  75. Lassen LM, Nielsen AZ, Olsen CE et al (2014a) Anchoring a plant cytochrome P450 via PsaM to the thylakoids in Synechococcus sp. PCC 7002: evidence for light-driven biosynthesis. PLoS One 9:e102184. doi: 10.1371/journal.pone.0102184 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Lassen LM, Nielsen AZ, Ziersen B et al (2014b) Redirecting photosynthetic electron flow into light-driven synthesis of alternative products including high-value bioactive natural compounds. ACS Synth Biol 3:1–12. doi: 10.1021/sb400136f PubMedCrossRefGoogle Scholar
  77. Lee YH, Ikegami T, Standley DM et al (2011) Binding energetics of ferredoxin-NADP+ reductase with ferredoxin and its relation to function. ChemBioChem 12:2062–2070. doi: 10.1002/cbic.201100189 PubMedCrossRefGoogle Scholar
  78. Lemaire SD, Michelet L, Zaffagnini M et al (2007) Thioredoxins in chloroplasts. Curr Genet 51:343–365. doi: 10.1007/s00294-007-0128-z PubMedCrossRefGoogle Scholar
  79. Leonard E, Koffas MAG (2007) Engineering of artificial plant cytochrome P450 enzymes for synthesis of isoflavones by Escherichia coli. Appl Environ Microbiol 73:7246–7251. doi: 10.1128/AEM.01411-07 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Lewis JC, Arnold FH (2009) Catalysts on demand: selective oxidations by laboratory-evolved cytochrome P450 BM3. Chim Int J Chem 63:309–312. doi: 10.2533/chimia.2009.309 CrossRefGoogle Scholar
  81. Marcus RA (1992) Electron transfer reactions in chemistry: theory and experiment. Rev Mod Phys. doi: 10.1103/RevModPhys.65.599 Google Scholar
  82. Matsumura T, Sakakibara H, Nakano R et al (1997) A nitrate-inducible ferredoxin in maize roots. Genomic organization and differential expression of two nonphotosynthetic ferredoxin isoproteins. Plant Physiol 114:653–660. doi: 10.1104/pp.114.2.653 PubMedPubMedCentralCrossRefGoogle Scholar
  83. Matsumura T, Kimata-Ariga Y, Sakakibara H et al (1999) Complementary DNA cloning and characterization of ferredoxin localized in bundle-sheath cells of maize leaves. Plant Physiol 119:481–488. doi: 10.1104/pp.119.2.481 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Mazor Y, Borovikova A, Nelson N (2015) The structure of plant photosystem I super-complex at 2.8 Å resolution. Elife 4:58–63. doi: 10.7554/eLife.07433 CrossRefGoogle Scholar
  85. Medina M (2009) Structural and mechanistic aspects of flavoproteins: photosynthetic electron transfer from photosystem I to NADP+. FEBS J 276:3942–3958. doi: 10.1111/j.1742-4658.2009.07122.x PubMedCrossRefGoogle Scholar
  86. Mellor SB, Nielsen AZ, Burow M et al (2016) Fusion of ferredoxin and cytochrome P450 enables direct light-driven biosynthesis. ACS Chem Biol 11:1862–1869. doi: 10.1021/acschembio.6b00190 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Meyer Y, Buchanan BB, Vignols F, Reichheld J-P (2009) Thioredoxins and glutaredoxins: unifying elements in redox biology. Annu Rev Genet 43:335–367. doi: 10.1146/annurev-genet-102108-134201 PubMedCrossRefGoogle Scholar
  88. Moal G, Lagoutte B (2012) Photo-induced electron transfer from photosystem I to NADP+: characterization and tentative simulation of the in vivo environment. Biochim Biophys Acta 1817:1635–1645. doi: 10.1016/j.bbabio.2012.05.015 PubMedCrossRefGoogle Scholar
  89. Molina-Heredia FP, Wastl J, Navarro JA et al (2003) A new function for an old cytochrome? Nature 424:33–34. doi: 10.1038/424033b PubMedCrossRefGoogle Scholar
  90. Munro AW, Leys DG, McLean KJ et al (2002) P450 BM3: the very model of a modern flavocytochrome. Trends Biochem Sci 27:250–257. doi: 10.1016/S0968-0004(02)02086-8 PubMedCrossRefGoogle Scholar
  91. Munro AW, Girvan HM, McLean KJ (2007a) Cytochrome P450-redox partner fusion enzymes. Biochim Biophys Acta 1770:345–359. doi: 10.1016/j.bbagen.2006.08.018 PubMedCrossRefGoogle Scholar
  92. Munro AW, Girvan HM, McLean KJ (2007b) Variations on a (t)heme—novel mechanisms, redox partners and catalytic functions in the cytochrome P450 superfamily. Nat Prod Rep 24:585–609. doi: 10.1039/B604190F PubMedCrossRefGoogle Scholar
  93. Munro AW, Girvan HM, Mason AE et al (2013) What makes a P450 tick? Trends Biochem Sci 38:140–150. doi: 10.1016/j.tibs.2012.11.006 PubMedCrossRefGoogle Scholar
  94. Murataliev MB, Feyereisen R, Walker FA (2004) Electron transfer by diflavin reductases. Biochim Biophys Acta 1698:1–26. doi: 10.1016/j.bbapap.2003.10.003 PubMedCrossRefGoogle Scholar
  95. Nebert DW, Wikvall K, Miller WL (2013) Human cytochromes P450 in health and disease. Philos Trans R Soc B 368:20120431–20120431. doi: 10.1098/rstb.2012.0431 CrossRefGoogle Scholar
  96. Nelson N, Yocum CF (2006) Structure and function of photosystems I and II. Annu Rev Plant Biol 57:521–565. doi: 10.1146/annurev.arplant.57.032905.105350 PubMedCrossRefGoogle Scholar
  97. Nielsen AZ, Ziersen B, Jensen K et al (2013) Redirecting photosynthetic reducing power toward bioactive natural product synthesis. ACS Synth Biol 2:308–315. doi: 10.1021/sb300128r PubMedCrossRefGoogle Scholar
  98. Nielsen AZ, Mellor SB, Vavitsas K et al (2016) Extending the biosynthetic repertoires of cyanobacteria and chloroplasts. Plant J 87:87–102. doi: 10.1111/tpj.13173 PubMedCrossRefGoogle Scholar
  99. Northrup SH, Erickson HP (1992) Kinetics of protein-protein association explained by Brownian dynamics computer simulation. Proc Natl Acad Sci USA 89:3338–3342. doi: 10.1073/pnas.89.8.3338 PubMedPubMedCentralCrossRefGoogle Scholar
  100. Oliver JWK, Atsumi S (2014) Metabolic design for cyanobacterial chemical synthesis. Photosynth Res 120:249–261. doi: 10.1007/s11120-014-9997-4 PubMedCrossRefGoogle Scholar
  101. Oliver JWK, Machado IMP, Yoneda H, Atsumi S (2013) Cyanobacterial conversion of carbon dioxide to 2,3-butanediol. Proc Natl Acad Sci USA 110:1249–1254. doi: 10.1073/pnas.1213024110 PubMedPubMedCentralCrossRefGoogle Scholar
  102. Onda Y, Matsumura T, Kimata-ariga Y et al (2000) Differential interaction of maize root ferredoxin: NADP+ oxidoreductase with photosynthetic and non-photosynthetic ferredoxin isoproteins. Plant Physiol 123:1037–1045PubMedPubMedCentralCrossRefGoogle Scholar
  103. Paddon CJ, Keasling JD (2014) Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat Rev Micro 12:355–367. doi: 10.1038/nrmicro3240 CrossRefGoogle Scholar
  104. Page CC, Moser CC, Chen X, Dutton PL (1999) Natural engineering principles of electron tunnelling in biological oxidation-reduction. Nature 402:47–52. doi: 10.1038/46972 PubMedCrossRefGoogle Scholar
  105. Page CC, Moser CC, Dutton PL (2003) Mechanism for electron transfer within and between proteins. Curr Opin Chem Biol 7:551–556. doi: 10.1016/j.cbpa.2003.08.005 PubMedCrossRefGoogle Scholar
  106. Pateraki I, Heskes AM, Hamberger B (2015) Cytochromes P450 for terpene functionalisation and metabolic engineering. Adv Biochem Eng Biotechnol 148:107–139. doi: 10.1007/10_2014_301 PubMedGoogle Scholar
  107. Peden EA, Boehm M, Mulder DW et al (2013) Identification of global ferredoxin interaction networks in Chlamydomonas reinhardtii. J Biol Chem 288:35192–35209. doi: 10.1074/jbc.M113.483727 PubMedPubMedCentralCrossRefGoogle Scholar
  108. Pinto TS, Malcata FX, Arrabaça JD et al (2013) Rubisco mutants of Chlamydomonas reinhardtii enhance photosynthetic hydrogen production. Appl Microbiol Biotechnol 97:5635–5643. doi: 10.1007/s00253-013-4920-z PubMedCrossRefGoogle Scholar
  109. Porter TD (1991) An unusual yet strongly conserved flavoprotein reductase in bacteria and mammals. Trends Biochem Sci 16:154–158. doi: 10.1016/0968-0004(91)90059-5 PubMedCrossRefGoogle Scholar
  110. Porter TD, Kasper CB (1986) NADPH-cytochrome P-450 oxidoreductase: flavin mononucleotide and flavin adenine dinucleotide domains evolved from different flavoproteins. BioChemistry 25:1682–1687. doi: 10.1021/bi00355a036 PubMedCrossRefGoogle Scholar
  111. Puthiyaveetil S, Kavanagh TA, Cain P et al (2008) The ancestral symbiont sensor kinase CSK links photosynthesis with gene expression in chloroplasts. Proc Natl Acad Sci USA 105:10061–10066. doi: 10.1073/pnas.0803928105 PubMedPubMedCentralCrossRefGoogle Scholar
  112. Raleiras P, Khanna N, Miranda H et al (2016) Turning around the electron flow in an uptake hydrogenase. EPR spectroscopy and in vivo activity of a designed mutant in HupSL from Nostoc punctiforme. Energy Environ Sci 9:581–594. doi: 10.1039/C5EE02694F CrossRefGoogle Scholar
  113. Reddy VS, Giesing H a, Morton RT et al (1998) Energetics of quasiequivalence: computational analysis of protein–protein interactions in icosahedral viruses. Biophys J 74:546–558. doi: 10.1016/S0006-3495(98)77813-0 PubMedPubMedCentralCrossRefGoogle Scholar
  114. Redinbo MR, Yeates TO, Merchant S (1994) Plastocyanin: Structural and functional analysis. J Bioenerg Biomembr 26:49–66. doi: 10.1007/BF00763219 PubMedCrossRefGoogle Scholar
  115. Reinbothe C, Bartsch S, Eggink LL et al (2006) A role for chlorophyllide a oxygenase in the regulated import and stabilization of light-harvesting chlorophyll a/b proteins. Proc Natl Acad Sci USA 103:4777–4782. doi: 10.1073/pnas.0511066103 PubMedPubMedCentralCrossRefGoogle Scholar
  116. Renault H, Bassard J, Hamberger B, Werck-Reichhart D (2014) Cytochrome P450-mediated metabolic engineering: current progress and future challenges. Curr Opin Plant Biol 19:27–34. doi: 10.1016/j.pbi.2014.03.004 PubMedCrossRefGoogle Scholar
  117. Rintamaki E, Martinsuo P, Pursiheimo S, Aro EM (2000) Cooperative regulation of light-harvesting complex II phosphorylation via the plastoquinol and ferredoxin-thioredoxin system in chloroplasts. Proc Natl Acad Sci USA 97:11644–11649. doi: 10.1073/pnas.180054297 PubMedPubMedCentralCrossRefGoogle Scholar
  118. Rittle J, Green MT (2010) Cytochrome P450 compound I: capture, characterization, and C-H bond activation kinetics. Science 330:933–937. doi: 10.1126/science.1193478 PubMedCrossRefGoogle Scholar
  119. Sanderson DG, Anderson LB, Gross EL (1986) Determination of the redox potential and diffusion coefficient of the protein plastocyanin using optically transparent filar electrodes. Biochim Biophys Acta 852:269–278. doi: 10.1016/0005-2728(86)90232-X PubMedCrossRefGoogle Scholar
  120. Sandmann G (1986) Formation of plastocyanin and cytochrome c-553 in different species of blue-green algae. Arch Microbiol 145:76–79. doi: 10.1007/BF00413030 CrossRefGoogle Scholar
  121. Saxena B, Subramaniyan M, Malhotra K et al (2014) Metabolic engineering of chloroplasts for artemisinic acid biosynthesis and impact on plant growth. J Biosci 39:33–41. doi: 10.1007/s12038-013-9402-z PubMedCrossRefGoogle Scholar
  122. Scheibe R, Dietz K-J (2012) Reduction-oxidation network for flexible adjustment of cellular metabolism in photoautotrophic cells. Plant Cell Environ 35:202–216. doi: 10.1111/j.1365-3040.2011.02319.x PubMedCrossRefGoogle Scholar
  123. Seefeldt LC, Yang ZY, Duval S, Dean DR (2013) Nitrogenase reduction of carbon-containing compounds. Biochim Biophys Acta 1827:1102–1111. doi: 10.1016/j.bbabio.2013.04.003 PubMedPubMedCentralCrossRefGoogle Scholar
  124. Sétif P (2006) Electron transfer from the bound iron–sulfur clusters to ferredoxin/flavodoxin: kinetic and structural properties of ferredoxin/flavodoxin reduction by photosystem I. In: Photosystem I. Springer, Dordrecht, pp 439–454CrossRefGoogle Scholar
  125. Shabestary K, Hudson EP (2016) Computational metabolic engineering strategies for growth-coupled biofuel production by Synechocystis. Metab Eng Commun 3:216–226. doi: 10.1016/j.meteno.2016.07.003 CrossRefGoogle Scholar
  126. Sheinerman F, Norel R, Honig B (2000) Electrostatic aspects of protein–protein interactions. Curr Opin Struct Biol 10:153–159. doi: 10.1016/S0959-440X(00)00065-8 PubMedCrossRefGoogle Scholar
  127. Simtchouk S, Eng JL, Meints CE et al (2013) Kinetic analysis of cytochrome P450 reductase from Artemisia annua reveals accelerated rates of NADH-dependent flavin reduction. FEBS J 280:6627–6642. doi: 10.1111/febs.12567 PubMedCrossRefGoogle Scholar
  128. Sono M, Roach MP, Coulter ED, Dawson JH (1996) Heme-containing oxygenases. Chem Rev 96:2841–2888. doi: 10.1021/cr9500500 PubMedCrossRefGoogle Scholar
  129. Steccanella V, Hansson M, Jensen PE (2015) Linking chlorophyll biosynthesis to a dynamic plastoquinone pool. Plant Physiol Biochem 97:207–216. doi: 10.1016/j.plaphy.2015.10.009 PubMedCrossRefGoogle Scholar
  130. Steinbeck J, Nikolova D, Weingarten R et al (2015) Deletion of proton gradient regulation 5 (PGR5) and PGR5-Like 1 (PGRL1) proteins promote sustainable light-driven hydrogen production in Chlamydomonas reinhardtii due to increased PSII activity under sulfur deprivation. Front Plant Sci 6:1–11. doi: 10.3389/fpls.2015.00892 CrossRefGoogle Scholar
  131. Stenbaek A, Jensen PE (2010) Redox regulation of chlorophyll biosynthesis. Phytochemistry 71:853–859. doi: 10.1016/j.phytochem.2010.03.022 PubMedCrossRefGoogle Scholar
  132. Sticht H, Rösch P (1998) The structure of iron-sulfur proteins. Prog Biophys Mol Biol 70:95–136. doi: 10.1016/S0079-6107(98)00027-3 PubMedCrossRefGoogle Scholar
  133. Tagawa K, Arnon DI (1968) Oxidation-reduction potentials and stoichiometry of electron transfer in ferredoxins. Biochim Biophys Acta 153:602–613. doi: 10.1016/0005-2728(68)90188-6 PubMedCrossRefGoogle Scholar
  134. Terauchi AM, Lu S-F, Zaffagnini M et al (2009) Pattern of expression and substrate specificity of chloroplast ferredoxins from Chlamydomonas reinhardtii. J Biol Chem 284:25867–25878. doi: 10.1074/jbc.M109.023622 PubMedPubMedCentralCrossRefGoogle Scholar
  135. Tian L, Musetti V, Kim J et al (2004) The Arabidopsis LUT1 locus encodes a member of the cytochrome P450 family that is required for carotenoid-ring hydroxylation activity. Proc Natl Acad Sci 101:402–407. doi: 10.1073/pnas.2237237100 PubMedPubMedCentralCrossRefGoogle Scholar
  136. Ullmann GM, Hauswald M, Jensen A, Knapp EW (2000) Structural alignment of ferredoxin and flavodoxin based on electrostatic potentials: Implications for their interactions with photosystem I and ferredoxin-NADP reductase. Proteins Struct Funct Genet 38:301–309PubMedCrossRefGoogle Scholar
  137. Umena Y, Kawakami K, Shen J-R, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55–60. doi: 10.1038/nature09913 PubMedCrossRefGoogle Scholar
  138. Vermilion JL, Ballou DP, Massey V, Coon MJ (1981) Separate roles for FMN and FAD in catalysis by liver microsomal NADPH-cytochrome P-450 reductase. J Biol Chem 256:266–277PubMedGoogle Scholar
  139. Wang M, Roberts DL, Paschke R et al (1997) Three-dimensional structure of NADPH-cytochrome P450 reductase: prototype for FMN- and FAD-containing enzymes. Proc Natl Acad Sci 94:8411–8416. doi: 10.1073/pnas.94.16.8411 PubMedPubMedCentralCrossRefGoogle Scholar
  140. Wastl J, Bendall DS, Howe CJ (2002) Higher plants contain a modified cytochrome c6. Trends Plant Sci 7:244–245. doi: 10.1016/S1360-1385(02)02280-X PubMedCrossRefGoogle Scholar
  141. Weigel M, Varotto C, Pesaresi P et al (2003) Plastocyanin is indispensable for photosynthetic electron flow in Arabidopsis thaliana. J Biol Chem 278:31286–31289. doi: 10.1074/jbc.M302876200 PubMedCrossRefGoogle Scholar
  142. Witt HT (1996) Primary reactions of oxygenic photosynthesis. Berichte der Bunsengesellschaft für Phys Chemie 100:1923–1942. doi: 10.1002/bbpc.19961001202 CrossRefGoogle Scholar
  143. Wlodarczyk A, Gnanasekaran T, Nielsen AZ et al (2016) Metabolic engineering of light-driven cytochrome P450 dependent pathways into Synechocystis sp. PCC 6803. Metab Eng 33:1–11. doi: 10.1016/j.ymben.2015.10.009 PubMedCrossRefGoogle Scholar
  144. Yacoby I, Pochekailov S, Toporik H et al (2011) Photosynthetic electron partitioning between [FeFe]-hydrogenase and ferredoxin:NADP+-oxidoreductase (FNR) enzymes in vitro. Proc Natl Acad Sci USA 108:9396–9401. doi: 10.1073/pnas.1103659108 PubMedPubMedCentralCrossRefGoogle Scholar
  145. Yamori W, Shikanai T (2016) Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis and plant growth. Annu Rev Plant Biol. doi: 10.1146/annurev-arplant-043015-112002 PubMedGoogle Scholar
  146. Yang Z-Y, Moure VR, Dean DR, Seefeldt LC (2012) Carbon dioxide reduction to methane and coupling with acetylene to form propylene catalyzed by remodeled nitrogenase. Proc Natl Acad Sci 109:19644–19648. doi: 10.1073/pnas.1213159109 PubMedPubMedCentralCrossRefGoogle Scholar
  147. Yonekura-Sakakibara K, Onda Y, Ashikari T et al (2000) Analysis of reductant supply systems for ferredoxin-dependent sulfite reductase in photosynthetic and nonphotosynthetic organs of maize. Plant Physiol 122:887–894. doi: 10.1104/pp.122.3.887 PubMedPubMedCentralCrossRefGoogle Scholar
  148. Yoshida K, Hisabori T (2016) Two distinct redox cascades cooperatively regulate chloroplast functions and sustain plant viability. Proc Natl Acad Sci. doi: 10.1073/pnas.1604101113 Google Scholar
  149. Zhang L, Pakrasi HB, Whitmarsh J (1994) Photoautotrophic growth of the cyanobacterium Synechocystis sp. PCC 6803 in the absence of cytochrome c553 and plastocyanin. J Biol Chem 269:5036–5042PubMedGoogle Scholar
  150. Zhang J, Lu X, Li J-J (2013) Conversion of fatty aldehydes into alk (a/e)nes by in vitro reconstituted cyanobacterial aldehyde-deformylating oxygenase with the cognate electron transfer system. Biotechnol Biofuels 6:86. doi: 10.1186/1754-6834-6-86 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Silas Busck Mellor
    • 1
  • Konstantinos Vavitsas
    • 1
  • Agnieszka Zygadlo Nielsen
    • 1
  • Poul Erik Jensen
    • 1
  1. 1.Copenhagen Plant Science Center, Center for Synthetic Biology ‘bioSYNergy’, Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark

Personalised recommendations