Photosynthesis Research

, Volume 132, Issue 2, pp 197–209 | Cite as

Stoichiometry and kinetics of mercury uptake by photosynthetic bacteria

  • Mariann Kis
  • Gábor Sipka
  • Péter MarótiEmail author
Original Article


Mercury adsorption on the cell surface and intracellular uptake by bacteria represent the key first step in the production and accumulation of highly toxic mercury in living organisms. In this work, the biophysical characteristics of mercury bioaccumulation are studied in intact cells of photosynthetic bacteria by use of analytical (dithizone) assay and physiological photosynthetic markers (pigment content, fluorescence induction, and membrane potential) to determine the amount of mercury ions bound to the cell surface and taken up by the cell. It is shown that the Hg(II) uptake mechanism (1) has two kinetically distinguishable components, (2) includes co-opted influx through heavy metal transporters since the slow component is inhibited by Ca2+ channel blockers, (3) shows complex pH dependence demonstrating the competition of ligand binding of Hg(II) ions with H+ ions (low pH) and high tendency of complex formation of Hg(II) with hydroxyl ions (high pH), and (4) is not a passive but an energy-dependent process as evidenced by light activation and inhibition by protonophore. Photosynthetic bacteria can accumulate Hg(II) in amounts much (about 105) greater than their own masses by well-defined strong and weak binding sites with equilibrium binding constants in the range of 1 (μM)−1 and 1 (mM)−1, respectively. The strong binding sites are attributed to sulfhydryl groups as the uptake is blocked by use of sulfhydryl modifying agents and their number is much (two orders of magnitude) smaller than the number of weak binding sites. Biofilms developed by some bacteria (e.g., Rvx. gelatinosus) increase the mercury binding capacity further by a factor of about five. Photosynthetic bacteria in the light act as a sponge of Hg(II) and can be potentially used for biomonitoring and bioremediation of mercury-contaminated aqueous cultures.


Bacterial photosynthesis Intact cells Spectroscopy Hg(II) contamination Biomediation of the environment 




QA and QB

Primary and secondary quinone acceptors, respectively


Reaction center



We are grateful to Prof. James Smart, University of Tennessee, Martin, USA, for discussions and careful reading of the manuscript. Thanks to COST (CM1306), GINOP-2.3.2-15-2016-00001, OTKA-K 112688, and EFOP − 3.6.2–16 for financial support.


  1. Abdia O, Kazemia M. (2015) A review study of biosorption of heavy metals and comparison between different biosorbents. J Mater Environ Sci 6(5):1386–1399Google Scholar
  2. Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98(12):2243–2257CrossRefPubMedGoogle Scholar
  3. Armitage JP (2001) Light responses in purple photosynthetic bacteria. Compr Ser Photosci 1:117–150Google Scholar
  4. Asztalos E, Italiano F, Milano F, Maróti P, Trotta M (2010) Early detection of mercury contamination by fluorescence induction of photosynthetic bacteria. Photochem Photobiol Sci 9:1218–1223CrossRefPubMedGoogle Scholar
  5. Asztalos E, Sipka G, Kis M, Trotta M, Maróti P (2012) The reaction center is the sensitive target of the mercury(II) ion in intact cells of photosynthetic bacteria. Photosynth Res 112(2):129–140CrossRefPubMedGoogle Scholar
  6. Bae W, Mehra RK, Mulchandani A, Chen W (2001) Genetic Engineering of Escherichia coli for Enhanced Uptake and Bioaccumulation of Mercury. Appl Environ Microbiol 67(11):5335–5338CrossRefPubMedCentralPubMedGoogle Scholar
  7. Bakkaloglu I, Butter TJ, Evison LM, Holland FS, Hancock IC (1998) Screening of various types biomass for removal and recovery of heavy metals (Zn, Cu, Ni) by biosorption, sedimentation and desorption. Water Sci Technol 38:269–277CrossRefGoogle Scholar
  8. Barton L (2005) Structural and Functional Relationships in Prokaryotes. Springer Science & Business Media, BerlinGoogle Scholar
  9. Chang JS, Law R, Chang CC (1997) Biosorption of lead, copper and cadmium by biomass of Pseudomonas aeruginosa PU21. Water Res 31:1651–1658CrossRefGoogle Scholar
  10. Daguené V, McFall E, Yumvihoze E, Shurong X, Amyot M (2012) Divalent base cations hamper HgII uptake. Environ Sci Technol 46:6645–6653CrossRefPubMedGoogle Scholar
  11. Deng X, Jia P (2011) Construction and characterization of a photosynthetic bacterium genetically engineered for Hg2+ uptake. Bioresour Technol 102:3083–3088CrossRefPubMedGoogle Scholar
  12. Deng X, Wang P (2012) Isolation of marine bacteria highly resistant to mercury and their bioaccumulation process. Bioresour Technol 121:342–347CrossRefPubMedGoogle Scholar
  13. Flemming H-C, Wingender J (2001) Relevance of microbial extracellular polymeric substances (EPSs). Part I. Structural and ecological aspects. Water Sci Technol 43:1–8PubMedGoogle Scholar
  14. Gabr RM, Hassan SHA, Shoreit AAM (2008) Biosorption of lead and nickel by living and non-living cells of Pseudomonas aeruginosa ASU 6a. Int Biodeterior Biodegradation 62:195–203CrossRefGoogle Scholar
  15. Gao J-L, Wraight CA (1990) Sulfhydryl modifying reagents inhibit QA oxidation in reaction centers from Rhodobacter sphaeroides and Capsulatus, but not Rhodopseudomonas viridis. Photosynth Res 26(3):171–179CrossRefPubMedGoogle Scholar
  16. Georgalis Y, Philipp M, Aleksandrova R, Krüger JK (2012) Light scattering studies on Ficoll PM70 solutions reveal two distinct diffusive modes. J Colloid Interface Sci 386(1):141–147CrossRefPubMedGoogle Scholar
  17. Giotta L, Agostiano A, Italiano F, Milano F, Trotta M (2006) Heavy metal ion influence on the photosynthetic growth of Rhodobacter sphaeroides. Chemosphere 62:1490–1499CrossRefPubMedGoogle Scholar
  18. Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374CrossRefPubMedGoogle Scholar
  19. Gourdon R, Bhende S, Rus E, Sofer SS (1990) Comparison of cadmium biosorption by Gram-positive and Gram-negative bacteria from activated sludge. Biotechnol Lett 12:839–842CrossRefGoogle Scholar
  20. Goyer RA, Cherian MG (2012) Toxicology of metals: biochemical aspects. Springer Science & Business Media, BerlinGoogle Scholar
  21. Greenberg AE, Clesceri LS, Eaton AD (1992) Standard methods for the examination of water and wastewater, 18th edition. A.P.H.A., WashingtonGoogle Scholar
  22. Greenwood NN, Earnshaw A (1997) Chemistry of the elements, 2nd edn. Butterworth-Heinemann, OxfordGoogle Scholar
  23. Grégoire D, Poulain AJ (2014) A little bit of light goes a long way: the role of phototrophs on mercury cycling. Metallomics 6(3):396–407CrossRefPubMedGoogle Scholar
  24. Gregoire DS, Poulain AJ (2016) A physiological role for Hg(II) during phototrophic growth. Nat Geosci 9(2):121–125CrossRefGoogle Scholar
  25. Hentzer M, Teitzel GM, Balzer GJ, Heydorn A, Molin S, Givskov M, Parsek MR (2001) Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol 183:5395–5401CrossRefPubMedCentralPubMedGoogle Scholar
  26. Hess P, Lansman JB, Tsien RW (1984) Different modes of Ca channel gating behaviour favoured by dihydropyridine Ca agonists and antagonists. Nature 311:538–544CrossRefPubMedGoogle Scholar
  27. Hinkle PM, Kinsella PA, Osterhoudt KC (1987) Cadmium uptake and toxicity via voltage-sensitive calcium channels. J Biol Chem 262(34):16333–16337PubMedGoogle Scholar
  28. Hongve D, Haaland S, Riise G, Blakar I, Norton S (2012) Decline of acid rain enhances mercury concentrations in fish. Environ Sci Technol 46(5):2490–2491CrossRefPubMedGoogle Scholar
  29. Hunt S (1986) Diversity of biopolymer structure and its potential for ionbinding applications. In: Eccles H, Hunt S (eds) Immobilisation of ions by bio-sorption. Ellis Horwood Ltd., West Sussex, pp 15–46Google Scholar
  30. Italiano F, Buccolieri A, Giotta L, Agostiano A, Valli L, Milano F, Trotta M (2009) Response of the carotenoids mutant Rhodobacter sphaeroides growing cells to cobalt and nickel exposure. Int Biodeterior Biodegr 63(7):948–957CrossRefGoogle Scholar
  31. Kane AL, Al-Shayeb B, Holec PV, Rajan S, Le Mieux NE, Heinsch SC, Psarska S, Aukema KG, Sarkar CA, Nater EA, Gralnick JA (2016) Toward bioremediation of methylmercury using silica encapsulated Escherichia coli harboring the mer operon. PLoS ONE 11(1): e0147036. doi: 10.1371/journal.pone.0147036 CrossRefPubMedCentralPubMedGoogle Scholar
  32. Kelly DJ, Thomas GH (2001) The tripartite ATP-independent periplasmic (TRAP) transporters of bacteria and archaea. FEMS Microbiol Rev 25(4):405–424CrossRefPubMedGoogle Scholar
  33. Kelly CA, Rudd JW, Holoka MH (2003) Effect of pH on mercury uptake by an aquatic bacterium: implications for Hg cycling. Environ Sci Technol 37(13):2941–2946CrossRefPubMedGoogle Scholar
  34. Kis M, Asztalos E, Sipka G, Maróti P (2014) Assembly of photosynthetic apparatus in Rhodobacter sphaeroides as revealed by functional assessments at different growth phases and in synchronized and greening cells. Photosynth Res 122:261–273CrossRefPubMedGoogle Scholar
  35. Kis M, Sipka G, Asztalos E, Rázga Z, Maróti P (2015) Purple non-sulfur photosynthetic bacteria monitor environmental stresses. J Photochem Photobiol B 151:110–117CrossRefPubMedGoogle Scholar
  36. Kocsis P, Asztalos E, Gingl Z, Maróti P (2010) Kinetic bacteriochlorophyll fluorometer. Photosynth Res 105:73–82CrossRefPubMedGoogle Scholar
  37. Labrenz M, Druschel GK, Thomsen-Ebert T, Gilbert B, Welch SA, Kemner KM, Logan GA, Summons RE, De Stasio G, Bond PL, Lai B, Kelly SD, Banfield JF (2000) Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science 290:1744–1747CrossRefPubMedGoogle Scholar
  38. Langston WJ, Bebianno MJ (1998) Metal metabolism in aquatic environments. Springer Science & Business Media, BerlinCrossRefGoogle Scholar
  39. LaVoie SP, Mapolelo DT, Cowart DM, Polacco BJ, Johnson MK, Scott RA, Miller SM, Summers AO (2015) Organic and inorganic mercurials have distinct effects on cellular thiols, metal homeostasis, and Fe-binding proteins in Escherichia coli. J Biol Inorg Chem 20(8):1239–1251CrossRefPubMedCentralPubMedGoogle Scholar
  40. Le Faucheur S, Tremblay Y, Fortin C, Campbell PGC (2011) Acidification increases mercury uptake by a freshwater alga Chlamydomonas reinhardtii. Environ Chem 8(6):612–622CrossRefGoogle Scholar
  41. Liehr SK, Chen H-J, Lin S-H (1994) Metals removal by algal biofilms. Water Sci Technol 30:59–68Google Scholar
  42. Ma Z, Jacobsen FE, Giedroc DP (2009) Metal transporters and metal sensors: how coordination chemistry controls bacterial metal homeostasis. Chem Rev 109(10):4644–4681CrossRefPubMedCentralPubMedGoogle Scholar
  43. Mailman M, Stepnuk L, Cicek N, Bodaly RA (2006) Strategies to lower methyl mercury concentrations in hydroelectric reservoirs and lakes: a review. Science of the total. Sci Total Environ 368(1):224–235Google Scholar
  44. Malik A (2004) Metal bioremediation through growing cells. Environ Int 30:261–278CrossRefPubMedGoogle Scholar
  45. Maróti P, Wraight CA (1988) Flash-induced H+ binding by bacterial photosynthetic reaction centers: comparison of spectrometric and conductometric methods. Biochim Biophys Acta 934:314–328CrossRefGoogle Scholar
  46. Matsushita T, Hirata H, Kusaka I (1988) Calcium channel blockers inhibit bacterial chemotaxis. FEBS Lett 236(2):437–440CrossRefPubMedGoogle Scholar
  47. Mehta SK, Gaur JP (2005) Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit Rev Biotechnol 25:113–152CrossRefPubMedGoogle Scholar
  48. Milano F, Dorogi M, Szebényi K, Nagy L, Maróti P, Váró Gy, Giotta L, Agostiano A, Trotta M (2007) Enthalpy/entropy driven activation of the first interquinone electron transfer in bacterial photosynthetic reaction centers embedded in vesicles of physiologically important phospholipids. Bioelectrochemistry 70:18–22CrossRefPubMedGoogle Scholar
  49. Moore MD, Kaplan S (1994) Members of the family Rhodospirillaceae reduce heavy metal oxyanions to maintain redox poise during photosynthetic growth. ASM News 60:17–23Google Scholar
  50. Munoz R, Guieysse B (2006) Algal-bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40(15):2799–2815CrossRefPubMedGoogle Scholar
  51. Nabi S (2014) Toxic effects of mercury. Springer, New Delhi, p 268Google Scholar
  52. Najera I, Lin CC, Kohbodi GA, Jay JA (2005) Effect of chemical speciation on toxicity of mercury to Escherichia coli biofilms and planktonic cells. Environ Sci Technol 39(9):3116–3120CrossRefPubMedGoogle Scholar
  53. Nevo Y, Nelson N (2006) The NRAMP family of metal-ion transporters. Biochimica et Biophysica Acta 1763: 609–620Google Scholar
  54. Patra M, Sharma A (2000) Mercury toxicity in plants. Bot Rev 66(3):379–422CrossRefGoogle Scholar
  55. Puranik PR, Paknikar KM (1999) Biosorption of lead, cadmium, and zinc by Citrobacter strain MCM B-181: characterization studies. Biotechnol Prog 15:228–237CrossRefPubMedGoogle Scholar
  56. Ren D, Navarro B, Xu H, Yue L, Shi Q, Clapham DE (2001) A prokaryotic voltage-gated sodium channel. Science 294(5550):2372–2375CrossRefPubMedGoogle Scholar
  57. Schaefer JK, Rocks SS, Zheng W, Gu B, Liang L, Morel FMM (2011) Active transport, substrate specificity, and methylation of Hg(II) in anaerobic bacteria. Proc Natl Acad Sci USA 108:8714–8719CrossRefPubMedCentralPubMedGoogle Scholar
  58. Sigel H, Sigel A, eds. (2009) Metallothioneins and related chelators (metal ions in life sciences). Metal ions in life sciences 5. Royal Society of Chemistry, Cambridge, ISBN 1-84755-899-2Google Scholar
  59. Singh A, Kuhad RC, Ward OP (2009) Biological remediation of soil: an overview of global market and available technologies. Advances in applied bioremediation. Springer, BerlinGoogle Scholar
  60. Siström WR (1962) The kinetics of the synthesis of photopigments in Rhodopseudomonas sphaeroides. J Gen Microbiol 28:607–616CrossRefPubMedGoogle Scholar
  61. Sloof JE, Viragh A, Vanderveer A (1995) Kinetics of cadmium uptake by green-algae. Water Air Soil Pollut 83(1–2):105–122CrossRefGoogle Scholar
  62. Spoering AL, Lewis K (2001) Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J Bacteriol 183:6746–6751CrossRefPubMedCentralPubMedGoogle Scholar
  63. Steunou AS, Liotenberg S, Soler M-N, Briandet R, Barbe V, Astier Ch, Ouchane S (2013) EmbRS a new two-component system that inhibits biofilm formation and saves Rubrivivax gelatinosus from sinking. Microbiol Open 2(3):431–446CrossRefGoogle Scholar
  64. Teitzel G, Parsek M (2003) Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl Environ Microbiol 69:2313–2320CrossRefPubMedCentralPubMedGoogle Scholar
  65. Théraulaz F, Thomas OP (1994) Complexometric determination of Mercury(lI) in waters by spectrophotometry of its dithizone complex. Mikrochim Acta 113:53–59CrossRefGoogle Scholar
  66. Torres M, Goldberg J, Jensen TE (1998) Heavy metal uptake by polyphosphate bodies in living and killed cells of Plectonema boryanum (Cyanophyceae). Microbios 96:141–147PubMedGoogle Scholar
  67. Turksen, Kursad (Ed.) (2015) Bioprinting in regenerative medicine. Springer International Publishing, Berlin. doi: 10.1007/978-3-319-21386-6$4 Google Scholar
  68. Vijayadeep C, Sastry P (2014) Effect of heavy metal uptake by E. coli and Bacillus sps. J Bioremediation Biodegr 5:238Google Scholar
  69. Wiener JG, Krabbenhoft DP, Heinz GH, Scheuhammer AM (2003) Ecotoxicology of mercury, Chap. 16. In Hoffman DJ, Rattner BA, Burton GA, Cairns J (eds) Handbook of ecotoxicology, 2nd edition. CRC Press, Boca Raton, pp. 409–463Google Scholar
  70. Winkelmann G, Winge DR (1994) Metal ions in fungi. Marcel Dekker, Inc, New YorkGoogle Scholar
  71. Youssef NH, Couger MB, McCully AL, Criado AEG, Elshahed MS (2015) Assessing the global phylum level diversity within the bacterial domain: a review. J Adv Res 6(3):269–282CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Institute of Medical PhysicsUniversity of SzegedSzegedHungary

Personalised recommendations