Abstract
Like other oxygenic photosynthetic organisms, diatoms produce glycolate, a toxic intermediate, as a consequence of the oxygenase activity of Rubisco. Diatoms can remove glycolate through excretion and through oxidation as part of the photorespiratory pathway. The diatom Phaeodactylum tricornutum encodes two proteins suggested to be involved in glycolate metabolism: PtGO1 and PtGO2. We found that these proteins differ substantially from the sequences of experimentally characterized proteins responsible for glycolate oxidation in other species, glycolate oxidase (GOX) and glycolate dehydrogenase. We show that PtGO1 and PtGO2 are the only sequences of P. tricornutum homologous to GOX. Our phylogenetic analyses indicate that the ancestors of diatoms acquired PtGO1 during the proposed first secondary endosymbiosis with a chlorophyte alga, which may have previously obtained this gene from proteobacteria. In contrast, PtGO2 is orthologous to an uncharacterized protein in Galdieria sulphuraria, consistent with its acquisition during the secondary endosymbiosis with a red alga that gave rise to the current plastid. The analysis of amino acid residues at conserved positions suggests that PtGO2, which localizes to peroxisomes, may use substrates other than glycolate, explaining the lack of GOX activity we observe in vitro. Instead, PtGO1, while only very distantly related to previously characterized GOX proteins, evolved glycolate-oxidizing activity, as demonstrated by in gel activity assays and mass spectrometry analysis. PtGO1 localizes to mitochondria, consistent with previous suggestions that photorespiration in diatoms proceeds in these organelles. We conclude that the ancestors of diatoms evolved a unique alternative to oxidize photorespiratory glycolate: a mitochondrial dehydrogenase homologous to GOX able to use electron acceptors other than O2.




Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Aboelmy MH, Peterhansel C (2014) Enzymatic characterization of Chlamydomonas reinhardtii glycolate dehydrogenase and its nearest proteobacterial homologue. Plant Physiol Biochem 79:25–30. doi:10.1016/j.plaphy.2014.03.009
Andersen RA, Berges JA, Harrison PJ, M. WM (2005) Recipes for freshwater and seawater media. In: Andersen RA (ed) Algal culturing techniques. Elseiver, Amsterdam, pp 429–538
Anderson LE (1971) Chloroplast and cytoplasmic enzymes. II. Pea leaf triose phosphate isomerases. Biochim Biophys Acta 235:237–244
Baurain D et al (2010) Phylogenomic evidence for separate acquisition of plastids in cryptophytes, haptophytes, and stramenopiles. Mol Biol Evol 27:1698–1709. doi:10.1093/molbev/msq059
Beezley BB, Gruber PJ, Frederick SE (1976) Cytochemical localization of glycolate dehydrogenase in mitochondria of chlamydomonas. Plant Physiol 58:315–319
Chauvin LT B, Moroney JV (2008) Chlamydomonas reinhardtii has genes for both glycolate oxidase and glycolate dehydrogenase. In: Allen JFG; E.; Golbeck; J.H.; Osmond CB (eds) Photosynthesis. Energy from the Sun: 14th International Conference of Photosynthesis. Springer, Dordrecht, pp 823–827
Claquin P, Martin-Jezequel V, Kromkamp JC, Veldhus MJ, Kraay GW (2002) Uncoupling of silicon compared with carbon and nitrogen metabolisms and the role of the cell cycle in continuous cultures of Thalassiosira pseudonana (Bacillariophyceae) under light, nitrogen, and phosphorus control. J Phycol 38:922–930
Dagan T, Martin W (2009) Microbiology. Seeing green and red in diatom genomes. Science 324:1651–1652. doi:10.1126/science.1175765
de Vet EC, van den Broek BT, van den Bosch H (1997) Nucleotide sequence of human alkyl-dihydroxyacetonephosphate synthase cDNA reveals the presence of a peroxisomal targeting signal 2. Biochim Biophys Acta 1346:25–29
Deschamps P, Moreira D (2012) Reevaluating the green contribution to diatom genomes. Genome biology evolution 4:683–688. doi:10.1093/gbe/evs053
Eisenhut M, Ruth W, Haimovich M, Bauwe H, Kaplan A, Hagemann M (2008) The photorespiratory glycolate metabolism is essential for cyanobacteria and might have been conveyed endosymbiontically to plants. Proc Natl Acad Sci USA 105:17199–17204. doi:10.1073/pnas.0807043105
Elias M, Archibald JM (2009) Sizing up the genomic footprint of endosymbiosis. Bioessays 31:1273–1279. doi:10.1002/bies.200900117
Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016. doi:10.1006/jmbi.2000.3903
Engqvist M, Drincovich MF, Flugge UI, Maurino VG (2009) Two D-2-hydroxy-acid dehydrogenases in Arabidopsis thaliana with catalytic capacities to participate in the last reactions of the methylglyoxal and beta-oxidation pathways. J Biol Chem 284:25026–25037. doi:10.1074/jbc.M109.021253
Engqvist MK, Esser C, Maier A, Lercher MJ, Maurino VG (2014) Mitochondrial 2-hydroxyglutarate metabolism. Mitochondrion 19:275–281. doi:10.1016/j.mito.2014.02.009
Engqvist MKM et al. (2015) GOX3, a glycolate oxidase homologue of yeast l-lactate cytochrome c oxidorreductase, supports l-lactate oxidation in roots of Arabidopsis thaliana. Plant Physiol 169(2):1042–1061
Esser C, Kuhn A, Groth G, Lercher MJ, Maurino VG (2014) Plant and animal glycolate oxidases have a common eukaryotic ancestor and convergently duplicated to evolve long-chain 2-hydroxy acid oxidases. Mol Biol Evol 31:1089–1101. doi:10.1093/molbev/msu041
Frederick SE, Gruber PJ, Tolbert NE (1973) The occurrence of glycolate dehydrogenase and glycolate oxidase in green plants: an evolutionary survey. Plant Physiol 52:318–323
Gibson DG (2009) Synthesis of DNA fragments in yeast by one-step assembly of overlapping oligonucleotides. Nucleic Acids Res 37:6984–6990. doi:10.1093/nar/gkp687
González-Moro B, Lacuesta M, Becerril JM, Gonzálelz-Murua C, Muñoz-Rueda A (1997) Glycolate accumulation causes a decrease of photosynthesis by inhibiting RUBISCO activity in maize. J Plant Physiol 150:388–394
Gross W (1990) Occurrence of glycolate oxidase and hydroxypyruvate reductase in Egregia menziesii (Phaeophyta). J Phycol 26:381–383
Gross W, Winkler U, Stabenau H (1985) Characterization of Peroxisomes from the Alga Bumilleriopsis filiformis. Plant Physiol 77:296–299
Gruber A, Vugrinec S, Hempel F, Gould SB, Maier UG, Kroth PG (2007) Protein targeting into complex diatom plastids: functional characterisation of a specific targeting motif. Plant Mol Biol 64:519–530. doi:10.1007/s11103-007-9171-x
Gruber A, Rocap G, Kroth PG, Armbrust EV, Mock T (2015) Plastid proteome prediction for diatoms and other algae with secondary plastids of the red lineage. Plant J 81:519–528. doi:10.1111/tpj.12734
Hellebust JA (1965) Excretion of some organic compounds by marine phytoplakton. Limnol Oceanogr 10:192–206. doi:10.4319/lo.1965.10.2.0192
Hennon GMM et al. (2015) Diatom acclimation to elevated CO2 via cAMP signalling and coordinated gene expression. Nat Clim Change 5:761–765
Jones JM, Morrell JC, Gould SJ (2000) Identification and characterization of HAOX1, HAOX2, and HAOX3, three human peroxisomal 2-hydroxy acid oxidases. J Biol Chem 275:12590–12597
Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. doi:10.1093/molbev/mst010
Keeling PJ (2010) The endosymbiotic origin, diversification and fate of plastids. Philosophical transactions of the Royal Society of London Series B. Biological sciences 365:729–748. doi:10.1098/rstb.2009.0103
Kelly GJ, Latzko E (1976) Inhibition of spinach-leaf phosphofructokinase by 2-phosphoglycollate. FEBS Lett 68:55–58
Kohler SA, Menotti E, Kuhn LC (1999) Molecular cloning of mouse glycolate oxidase. High evolutionary conservation and presence of an iron-responsive element-like sequence in the mRNA. J Biol Chem 274:2401–2407
Kroth PG et al (2008) A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis. PloS one 3:e1426. doi:10.1371/journal.pone.0001426
Ku C et al (2015) Endosymbiotic origin and differential loss of eukaryotic genes. Nature 524:427–432. doi:10.1038/nature14963
Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
Lindqvist Y, Branden CI (1989) The active site of spinach glycolate oxidase. J Biol Chem 264:3624–3628
Linka N, Theodoulou FL, Haslam RP, Linka M, Napier JA, Neuhaus HE, Weber AP (2008) Peroxisomal ATP import is essential for seedling development in Arabidopsis thaliana. Plant Cell 20:3241–3257. doi:10.1105/tpc.108.062042
Lodi T, Ferrero I (1993) Isolation of the DLD gene of Saccharomyces cerevisiae encoding the mitochondrial enzyme D-lactate ferricytochrome c oxidoreductase. Mol Gen Genet 238:315–324
Lodi T, O’Connor D, Goffrini P, Ferrero I (1994) Carbon catabolite repression in Kluyveromyces lactis: isolation and characterization of the KIDLD gene encoding the mitochondrial enzyme D-lactate ferricytochrome c oxidoreductase. Mol Gen Genet 244:622–629
Logemann J, Schell J, Willmitzer L (1987) Improved method for the isolation of RNA from plant tissues. Anal Biochem 163:16–20
Mattevi A (2006) To be or not to be an oxidase: challenging the oxygen reactivity of flavoenzymes. Trends Biochem Sci 31:276–283
Maurino VG, Engqvist MK (2015) 2-Hydroxy Acids in Plant Metabolism. The Arabidopsis book / American Society of Plant Biologists 13:e0182. doi:10.1199/tab.0182
Maurino VG, Peterhansel C (2010) Photorespiration: current status and approaches for metabolic engineering. Curr Opin Plant Biol 13:249–256. doi:10.1016/j.pbi.2010.01.006
Moustafa A, Beszteri B, Maier UG, Bowler C, Valentin K, Bhattacharya D (2009) Genomic footprints of a cryptic plastid endosymbiosis in diatoms. Science 324:1724–1726. doi:10.1126/science.1172983
Nakamura Y, Kanakagiri S, Van K, He W, Spalding MH (2005) Disruption of the glycolate dehydrogenase gene in the high-CO2-requiring mutant HCR89 of Chlamydomonas reinhardtii. Can J Bot 83:820–833. doi:Doi:10.1139/B05-067
Nelson EB, Tolbert NE (1970) Glycolate dehydrogenase in green algae. Arch Biochem Biophys 141:102–110
Nelson BK, Cai X, Nebenfuhr A (2007) A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J 51:1126–1136. doi:10.1111/j.1365-313X.2007.03212.x
Paul JS, Volcani BE (1974) Photorespiration in diatoms I. The oxidation of glycolic acid in Thallassiosira pseudonana (Cyclotella nana). Arch Microbiol 101:115–120
Paul JS, Volcani BE (1975) Photorespiration in diatoms III. Glycolate: cytochrome c reductase in the diatom Cylindrotheca fusiformis. Plant Sci Lett 5:281–285
Paul JS, Sullivan CS, Bolxani BE (1975) Photorespiration in diatoms. Mitochondrial glycolate dehydrogenase in clyindrotheca fusiformis and Nitzschia alba. Arch Biochem Biophys 169:152–159
Poschmann G et al (2014) High-fat diet induced isoform changes of the Parkinson’s disease protein DJ-1. J Proteome Res 13:2339–2351. doi:10.1021/pr401157k
Rademacher N et al (2016) Photorespiratory glycolate oxidase is essential for the survival of the red alga Cyanidioschyzon merolae under ambient CO2 conditions. J Exp Bot 67:3165–3175. doi:10.1093/jxb/erw118
Reumann S, Buchwald D, Lingner T (2012) PredPlantPTS1: A Web Server for the Prediction of Plant Peroxisomal Proteins. Front Plant Sci 3:194. doi:10.3389/fpls.2012.00194
Schaffner W, Weissmann C (1973) A rapid, sensitive, and specific method for the determination of protein in dilute solution. Anal Biochem 56:502–514
Schnitzler Parker M, Armbrust EV, Piovia-Scott J, Keil RG (2004) Induction of photorespiration by light in the centric diatom Thalassiosira weissflogii (Bacillariophyceae): Molecular characterization and physiological consequences. J Phycol 40:557–567
Smith SR et al (2016) Transcript level coordination of carbon pathways during silicon starvation-induced lipid accumulation in the diatom Thalassiosira pseudonana. New Phytol 210:890–904. doi:10.1111/nph.13843
Stabenau H, Winkler U (2005) Glycolate metabolism in green algae. Physiol Plant 123:235–245. doi:Doi:10.1046/J.1399-3054.2005.00442.X
Sunagawa S et al (2015) Ocean plankton. Structure and function of the global ocean microbiome. Science 348:1261359. doi:10.1126/science.1261359
Suzuki KK I, Yokoyama S, Ikawa T (1991) Glycolate-oxidizing enzymes in algae. J Phycol 27:492–498
Tatusova T, Ciufo S, Fedorov B, O’Neill K, Tolstoy I (2014) RefSeq microbial genomes database: new representation and annotation strategy. Nucleic Acids Res 42:D553–D559. doi:10.1093/nar/gkt1274
UniProtConsortium (2015) UniProt: a hub for protein information. Nucleic Acids Res 43:D204–212. doi:10.1093/nar/gku989
Waadt R, Kudla J (2008) In planta visualization of protein interactions using bimolecular fluorescence complementation (BiFC). Color Spring Harb Protoc. doi:10.1101/pdb.prot4995
Welchen E et al (2016) D-Lactate dehydrogenase links methylglyoxal degradation and electron transport through cytochrome C. Plant Physiol. doi:10.1104/pp.16.01174
Wienstroer J, Engqvist MK, Kunz HH, Flugge UI, Maurino VG (2012) D-Lactate dehydrogenase as a marker gene allows positive selection of transgenic plants. FEBS Lett 586:36–40. doi:10.1016/j.febslet.2011.11.020
Winkler U, Stabenau H (1992) Compartmentation of peroxisomal enzymes in the diatom Fragilaria In: Stabenau H (ed) Phylogenetic changes in peroxisomes of algae - Phylogeny of plant peroxysomes. University Press, Oldenburg, pp 130–139
Winkler U, Stabenau H (1995) Isolation and characterization of peroxisomes from diatoms. Planta 195:403–407
Zelitch I, Schultes NP, Peterson RB, Brown P, Brutnell TP (2009) High glycolate oxidase activity is required for survival of maize in normal air. Plant Physiol 149:195–204. doi:10.1104/pp.108.128439
Zhang H, Gao S, Lercher MJ, Hu S, Chen WH (2012a) EvolView, an online tool for visualizing, annotating and managing phylogenetic trees. Nucleic Acids Res 40:W569–W572. doi:10.1093/nar/gks576
Zhang Z et al (2012b) Glycolate oxidase isozymes are coordinately controlled by GLO1 and GLO4 in rice. PLoS ONE 7:e39658. doi:10.1371/journal.pone.0039658
Acknowledgements
The authors thank Heiko Schoof for helpful discussions. The authors are also grateful to the Center for Advanced Imaging (CAI, Heinrich Heine University) for assistance.
Funding
This work was supported by the grants of the Deutsche Forschungsgemeinschaft (FOR 1186 to VGM; EXC 1028 to MJL and VGM).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Jessica Schmitz and Nishtala V. Srikanth have contributed equally to this work.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Schmitz, J., Srikanth, N.V., Hüdig, M. et al. The ancestors of diatoms evolved a unique mitochondrial dehydrogenase to oxidize photorespiratory glycolate. Photosynth Res 132, 183–196 (2017). https://doi.org/10.1007/s11120-017-0355-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11120-017-0355-1


