Baird GS, Zacharias DA, Tsien RY (1999) Circular permutation and receptor insertion within green fluorescent proteins. Proc Natl Acad Sci U S A 96:11241–11246. doi:10.1073/pnas.96.20.11241
CAS
Article
PubMed
PubMed Central
Google Scholar
Bennett B, Kimball E, Gao M (2009) Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat Chem Biol 5:593–599. doi:10.1038/nchembio.186.Absolute
CAS
Article
PubMed
PubMed Central
Google Scholar
Bilan DS, Belousov VV (2016) Genetically encoded probes for NAD+/NADH monitoring. Free Radic Biol Med. doi:10.1016/j.freeradbiomed.2016.06.018
Google Scholar
Bilan DS, Matlashov ME, Schultz C et al (2014) Genetically encoded fluorescent indicator for imaging NAD+/NADH ratio changes in different cellular compartments. Biochim Biophys Acta 1840:951–957. doi:10.1016/j.bbagen.2013.11.018.Genetically
CAS
Article
PubMed
Google Scholar
Blacker TS, Mann ZF, Gale JE et al (2014) Separating NADH and NADPH fluorescence in live cells and tissues using FLIM. Nat Commun 5:3936. doi:10.1038/ncomms4936
CAS
Article
PubMed
PubMed Central
Google Scholar
Brekasis D, Paget MSB (2003) A novel sensor of NADH/NAD+ redox poise in Streptomyces coelicolor A3(2). EMBO J 22:4856–4865
CAS
Article
PubMed
PubMed Central
Google Scholar
Chattoraj M, King BA, Bublitz GU, Boxer SG (1996) Ultra-fast excited state dynamics in green fluorescent protein: multiple states and proton transfer. Proc Natl Acad Sci USA 93:8362–8367. doi:10.1073/pnas.93.16.8362
CAS
Article
PubMed
PubMed Central
Google Scholar
Day RN, Davidson MW (2009) The fluorescent protein palette: tools for cellular imaging. Chem Soc Rev 38:2887–2921. doi:10.1039/b901966a
CAS
Article
PubMed
PubMed Central
Google Scholar
Griesbeck O, Baird GS, Campbell RE et al (2001) Reducing the environmental sensitivity of yellow fluorescent protein: mechanism and applications. J Biol Chem 276:29188–29194. doi:10.1074/jbc.M102815200
CAS
Article
PubMed
Google Scholar
Gyan S, Shiohira Y, Sato I et al (2006) Regulatory loop between redox sensing of the NADH/NAD+ ratio by Rex (YdiH) and oxidation of NADH by NADH dehydrogenase Ndh in Bacillus subtilis. J Bacteriol 188:7062–7071. doi:10.1128/JB.00601-06
CAS
Article
PubMed
PubMed Central
Google Scholar
Hung YP, Albeck JG, Tantama M, Yellen G (2011) Imaging cytosolic NADH-NAD+ redox state with a genetically encoded fluorescent biosensor. Cell Metab 14:545–554. doi:10.1016/j.cmet.2011.08.012
CAS
Article
PubMed
PubMed Central
Google Scholar
Larsson JT, Rogstam A, von Wachenfeldt C (2005) Coordinated patterns of cytochrome bd and lactate dehydrogenase expression in Bacillus subtilis. Microbiology 151:3323–3335. doi:10.1099/mic.0.28124-0
CAS
Article
PubMed
Google Scholar
Lenz O, Lauterbach L, Frielingsdorf S, Friedrich B (2015) Oxygen-tolerant hydrogenases and their biotechnological potential. Biohydrogen 61–96. doi:10.1515/9783110336733.61
Lin SJ, Guarente L (2003) Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease. Curr Opin Cell Biol 15:241–246. doi:10.1016/S0955-0674(03)00006-1
CAS
Article
PubMed
Google Scholar
Llopis J, McCaffery JM, Miyawaki A et al (1998) Measurement of cytosolic, mitochondrial, and golgi pH in single living cells with green fluorescent proteins. Proc Natl Acad Sci 95:6803–6808. doi:10.1073/pnas.95.12.6803
CAS
Article
PubMed
PubMed Central
Google Scholar
McLaughlin KJ, Strain-Damerell CM, Xie K et al (2010) Structural basis for NADH/NAD+ redox sensing by a Rex family repressor. Mol Cell 38:563–575. doi:10.1016/j.molcel.2010.05.006
CAS
Article
PubMed
Google Scholar
Nagai T, Sawano A, Park ES, Miyawaki A (2001) Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proc Natl Acad Sci USA 98:3197–3202. doi:10.1073/pnas.051636098
CAS
Article
PubMed
PubMed Central
Google Scholar
Olsen KN, Budde BB, Siegumfeldt H, Bjo K (2002) Noninvasive measurement of bacterial intracellular pH on a single-cell level with green fluorescent protein and fluorescence ratio imaging microscopy noninvasive measurement of bacterial intracellular pH on a single-cell level with green fluorescent prote. Appl Environ Microbiol 68:11–14. doi:10.1128/AEM.68.8.4145
Article
Google Scholar
Patterson GH, Knobel SM, Arkhammar P et al (2000) Separation of the glucose-stimulated cytoplasmic and mitochondrial NAD(P)H responses in pancreatic islet beta cells. Proc Natl Acad Sci USA 97:5203–5207. doi:10.1073/pnas.090098797
CAS
Article
PubMed
PubMed Central
Google Scholar
Rocheleau JV, Head WS, Piston DW (2004) Quantitative NAD(P)H/flavoprotein autofluorescence imaging reveals metabolic mechanisms of pancreatic islet pyruvate response. J Biol Chem 279:31780–31787. doi:10.1074/jbc.M314005200
CAS
Article
PubMed
Google Scholar
Schmitt FJ, Renger G, Friedrich T et al (2014a) Reactive oxygen species: Re-evaluation of generation, monitoring and role in stress-signaling in phototrophic organisms. Biochim Biophys Acta 1837:835–848. doi:10.1016/j.bbabio.2014.02.005
CAS
Article
PubMed
Google Scholar
Schmitt FJ, Thaa B, Junghans C et al (2014b) EGFP-pHsens as a highly sensitive fluorophore for cellular pH determination by fluorescence lifetime imaging microscopy (FLIM). Biochim Biophys Acta 1837:1581–1593. doi:10.1016/j.bbabio.2014.04.003
CAS
Article
PubMed
Google Scholar
Schwarzländer M, Wagner S, Ermakova YG et al (2014) The “mitoflash” probe cpYFP does not respond to superoxide. Nature 514:E12–E14. doi:10.1038/nature13858
Article
PubMed
PubMed Central
Google Scholar
Sickmier EA, Brekasis D, Paranawithana S et al (2005) X-ray structure of a Rex-family repressor/NADH complex insights into the mechanism of redox sensing. Structure 13:43–54. doi:10.1016/j.str.2004.10.012
CAS
Article
PubMed
Google Scholar
Tejwani V, Schmitt F-J, Wilkening S et al (2016) Investigation of the NADH/NAD+ ratio in Ralstonia eutropha using the fluorescence reporter protein peredox. Biochim Biophys Acta doi:10.1016/j.bbabio.2016.11.001
PubMed
Google Scholar
Wang E, Bauer MC, Rogstam A et al (2008) Structure and functional properties of the Bacillus subtilis transcriptional repressor Rex. Mol Microbiol 69:466–478. doi:10.1111/j.1365-2958.2008.06295.x
CAS
Article
PubMed
Google Scholar
Yacoby I, Pochekailov S, Toporik H et al (2011) Photosynthetic electron partitioning between [FeFe]-hydrogenase and ferredoxin: NADP þ-oxidoreductase (FNR) enzymes in vitro. Pnas 108:9396–9401. doi:10.1073/pnas.1103659108/-/DCSupplemental.www.pnas.cgi/doi/10.1073/pnas.1103659108
CAS
Article
PubMed
PubMed Central
Google Scholar
Ying W (2008) NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid Redox Signal 10:179–206. doi:10.1089/ars.2007.1672
CAS
Article
PubMed
Google Scholar
Zhao Y, Jin J, Hu Q et al (2011) Genetically encoded fluorescent sensors for intracellular NADH detection. Cell Metab 14:555–566. doi:10.1016/j.cmet.2011.09.004
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhao Y, Hu Q, Cheng F et al (2015) SoNar, a highly responsive NAD+/NADH sensor, allows high-throughput metabolic screening of anti-tumor agents. Cell Metab 21:777–789. doi:10.1016/j.cmet.2015.04.009
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhao Y, Wang A, Zou Y et al (2016) In vivo monitoring of cellular energy metabolism using SoNar, a highly responsive sensor for NAD+/NADH redox state. Nat Protoc 11:1345–1359. doi:10.1038/nprot.2016.074
CAS
Article
PubMed
Google Scholar
Zhou Y, Wang L, Yang F et al (2011) Determining the extremes of the cellular NAD(H) level by using an Escherichia coli NAD+-auxotrophic mutant. Appl Environ Microbiol 77:6133–6140. doi:10.1128/AEM.00630-11
CAS
Article
PubMed
PubMed Central
Google Scholar