Abstract
In the cyanobacterial photosystem II (PSII), the O4-water chain in the D1 and CP43 proteins, a chain of water molecules that are directly H-bonded to O4 of the Mn4Ca cluster, is linked with a channel that connects the protein bulk surface along with a membrane-extrinsic protein subunit, PsbU (O4-PsbU channel). The cyanobacterial PSII structure also shows that the O1 site of the Mn4Ca cluster has a chain of H-bonded water molecules, which is linked with the channel that proceeds toward the bulk surface via PsbU and PsbV (O1-PsbU/V channel). Membrane-extrinsic protein subunits PsbU and PsbV in cyanobacterial PSII are replaced with PsbP and PsbQ in plant PSII. However, these four proteins have no structural similarity. It remains unknown whether the corresponding channels also exist in plant PSII, because water molecules are not identified in the plant PSII cryo-electron microscopy (cryo-EM) structure. Using the cyanobacterial and plant PSII structures, we analyzed the channels that proceed from the Mn4Ca cluster. The cyanobacterial O4-PsbU and O1-PsbU/V channels were structurally conserved as the channel that proceeds along PsbP toward the protein bulk surface in the plant PSII (O4-PsbP and O1-PsbP channels, respectively). Calculated protonation states indicated that in contrast to the original geometry of the plant cryo-EM structure, protonated PsbP-Lys166 may form a salt-bridge with ionized D1-Glu329 and protonated PsbP-Lys173 may form a salt-bridge with ionized PsbQ-Asp28 near the O1-PsbP channel. The existence of these channels might explain the molecular mechanism of how PsbP can interact with the Mn4Ca cluster.
This is a preview of subscription content, access via your institution.







References
Bashford D, Karplus M (1990) pK a’s of ionizable groups in proteins: atomic detail from a continuum electrostatic model. Biochemistry 29:10219–10225
Beglov D, Roux B (1997) An integral equation to describe the solvation of polar molecules in liquid water. J Phys Chem B 101:7821–7826
Berendsen HJC, Postma JPM, Vangunsteren WF, Dinola A, Haak JR (1984) Molecular-dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690. doi:10.1063/1.448118
Bricker TM, Roose JL, Fagerlund RD, Frankel LK, Eaton-Rye JJ (2012) The extrinsic proteins of photosystem II. Biochim Biophys Acta 1817(1):121–142. doi:10.1016/j.bbabio.2011.07.006
Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy minimization and dynamics calculations. J Comput Chem 4(2):187–217
Calderone V, Trabucco M, Vujicic A, Battistutta R, Giacometti GM, Andreucci F, Barbato R, Zanotti G (2003) Crystal structure of the PsbQ protein of photosystem II from higher plants. EMBO Rep 4(9):900–905. doi:10.1038/sj.embor.embor923
Case DA, Darden TA, Cheatham I, T E, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts B, Hayik S, Roitberg A, Seabra G, Swails J, Götz AW, Kolossváry I, Wong KF, Paesani F, Vanicek J, Wolf RM, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh M-J, Cui G, Roe DR, Mathews DH, Seetin MG, Salomon-Ferrer R, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA (2012) AMBER 12. University of California, San Francisco
Case DA, Babin V, Berryman JT, Betz RM, Cai Q, D.S. Cerutti, Cheatham I, T. E., Darden TA, Duke RE, Gohlke H, Goetz AW, Gusarov S, Homeyer N, Janowski P, Kaus J, Kolossváry I, Kovalenko A, Lee TS, LeGrand S, Luchko T, Luo R, Madej B, Merz KM, Paesani F, Roe DR, Roitberg A, Sagui C, Salomon-Ferrer R, Seabra G, Simmerling CL, Smith W, Swails J, Walker RC, Wang J, Wolf RM, Wu X, Kollman PA (2014) AMBER 14, University of California, San Francisco
Cox N, Messinger J (2013) Reflections on substrate water and dioxygen formation. Biochim Biophys Acta 1827(8–9):1020–1030. doi:10.1016/j.bbabio.2013.01.013
Cox N, Pantazis DA, Neese F, Lubitz W (2013) Biological water oxidation. Acc Chem Res 46(7):1588–1596
Dau H, Haumann M (2008) The manganese complex of photosystem II in its reaction cycle? Basic framework and possible realization at the atomic level. Coord Chem Rev 252:273–295
Dau H, Zaharieva I, Haumann M (2012) Recent developments in research on water oxidation by photosystem II. Curr Opin Chem Biol 16(1–2):3–10
Feller SE, Zhang YH, Pastor RW, Brooks BR (1995) Constant-pressure molecular-dynamics simulation: the Langevin piston method. J Chem Phys 103(11):4613–4621. doi:10.1063/1.470648
Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303(5665):1831–1838
Gabdulkhakov A, Guskov A, Broser M, Kern J, Muh F, Saenger W, Zouni A (2009) Probing the accessibility of the Mn4Ca cluster in photosystem II: channels calculation, noble gas derivatization, and cocrystallization with DMSO. Structure 17(9):1223–1234. doi:10.1016/j.str.2009.07.010
Galstyan A, Robertazzi A, Knapp EW (2012) Oxygen-evolving Mn cluster in photosystem II: the protonation pattern and oxidation state in the high-resolution crystal structure. J Am Chem Soc 134(17):7442–7449
Ghanotakis DF, Topper JN, Babcock GT, Yocum CF (1984a) Water-soluble 17-Kda and 23-Kda polypeptides restore oxygen evolution activity by creating a high-affinity binding-site for Ca2+ on the oxidizing side of photosystem-II. FEBS Lett 170(1):169–173. doi:10.1016/0014-5793(84)81393-9
Ghanotakis DF, Topper JN, Yocum CF (1984b) Structural organization of the oxidizing side of photosystem-II. Exogenous reductants reduce and destroy the Mn-complex in photosystems II membranes depleted of the 17 and 23 Kda. Biochim Biophys Acta 767(3):524–531. doi:10.1016/0005-2728(84)90051-3
Ho FM, Styring S (2008) Access channels and methanol binding site to the CaMn4 cluster in photosystem II based on solvent accessibility simulations, with implications for substrate water access. Biochim Biophys Acta 1777(2):140–153
Ido K, Kakiuchi S, Uno C, Nishimura T, Fukao Y, Noguchi T, Sato F, Ifuku K (2012) The conserved His-144 in the PsbP protein is important for the interaction between the PsbP N-terminus and the Cyt b559 subunit of photosystem II. J Biol Chem 287(31):26377–26387. doi:10.1074/jbc.M112.385286
Ido K, Nield J, Fukao Y, Nishimura T, Sato F, Ifuku K (2014) Cross-linking evidence for multiple interactions of the PsbP and PsbQ proteins in a higher plant photosystem II supercomplex. J Biol Chem 289(29):20150–20157. doi:10.1074/jbc.M114.574822
Ifuku K, Noguchi T (2016) Structural coupling of extrinsic proteins with the oxygen-evolving center in photosystem II. Front Plant Sci 7:84. doi:10.3389/fpls.2016.00084
Ifuku K, Nakatsu T, Kato H, Sato F (2004) Crystal structure of the PsbP protein of photosystem II from Nicotiana tabacum. EMBO Rep:362–367
Ifuku K, Yamamoto Y, Ono TA, Ishihara S, Sato F (2005) PsbP protein, but not PsbQ protein, is essential for the regulation and stabilization of photosystem II in higher plants. Plant Physiol 139(3):1175–1184. doi:10.1104/pp.105.068643
Inoue-Kashino N, Kashino Y, Satoh K, Terashima I, Pakrasi HB (2005) PsbU provides a stable architecture for the oxygen-evolving system in cyanobacterial photosystem II. Biochemistry 44(36):12214–12228. doi:10.1021/bi047539k
Ishikita H, Knapp E-W (2005) Redox potential of cytochrome c550 in the cyanobacterium Thermosynechococcus elongatus. FEBS Lett 579:3190–3194
Kerfeld CA, Sawaya MR, Bottin H, Tran KT, Sugiura M, Cascio D, Desbois A, Yeates TO, Kirilovsky D, Boussac A (2003) Structural and EPR characterization of the soluble form of cytochrome c-550 and of the psbV2 gene product from cyanobacterium Thermosynechococcus elongatus. Plant Cell Physiol 44:697–706
Kovalenko A, Hirata F (1999) Potential of mean force between two molecular ions in a polar molecular solvent: a study by the three-dimensional reference interaction site model. J Phys Chem B 103:7942–7957
Kubo R, Toda M, Hashitsume N (1991). Statistical Physics II, Springer, Berlin
Kulik LV, Epel B, Lubitz W, Messinger J (2007) Electronic structure of the Mn4OxCa cluster in the S0 and S2 states of the oxygen-evolving complex of photosystem II based on pulse 55Mn-ENDOR and EPR spectroscopy. J Am Chem Soc 129(44):13421–13435
Linke K, Ho FM (2014) Water in Photosystem II: Structural, functional and mechanistic considerations. Biochim Biophys Acta 1837(1):14–32
Luchko T, Gusarov S, Roe DR, Simmerling C, Case DA, Tuszynski J, Kovalenko A (2010) Three-dimensional molecular theory of solvation coupled with molecular dynamics in amber. J Chem Theory Comput 6:607–624
MacKerell AD Jr, Bashford D, Bellott RL, Dunbrack RL Jr, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE III, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102(18):3586–3616
McConnell IL, Grigoryants VM, Scholes CP, Myers WK, Chen PY, Whittaker JW, Brudvig GW (2012) EPR-ENDOR characterization of (17O, 1H, 2H) water in manganese catalase and its relevance to the oxygen-evolving complex of photosystem II. J Am Chem Soc 134(3):1504–1512
Messinger J (2004) Evaluation of different mechanistic proposals for water oxidation in photosynthesis on the basis of Mn4OxCa structures for the catalytic site and spectroscopic data. Phys Chem Chem Phys 6:4764–4771
Murray JW, Barber J (2007) Structural characteristics of channels and pathways in photosystem II including the identification of an oxygen channel. J Struct Biol 159(2):228–237
Nozaki Y, Tanford C (1967) Acid-base titrations in concentrated guanidine hydrochloride. Dissociation constants of the guamidinium ion and of some amino acids. J Am Chem Soc 89(4):736–742
Ogata K, Yuki T, Hatakeyama M, Uchida W, Nakamura S (2013) All-atom molecular dynamics simulation of photosystem II embedded in thylakoid membrane. J Am Chem Soc 135(42):15670–15673
Petrek M, Otyepka M, Banas P, Kosinova P, Koca J, Damborsky J (2006) CAVER: a new tool to explore routes from protein clefts, pockets and cavities. BMC Bioinform 7:316. doi:10.1186/1471-2105-7-316
Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802
Rabenstein B, Knapp EW (2001) Calculated pH-dependent population and protonation of carbon-monoxy-myoglobin conformers. Biophys J 80(3):1141–1150
Rapatskiy L, Cox N, Savitsky A, Ames WM, Sander J, Nowaczyk MM, Rögner M, Boussac A, Neese F, Messinger J, Lubitz W (2012) Detection of the water-binding sites of the oxygen-evolving complex of photosystem II using W-band 17O electron-electron double resonance-detected NMR spectroscopy. J Am Chem Soc 134(40):16619–16634
Renger G (2001) Photosynthetic water oxidation to molecular oxygen: apparatus and mechanism. Biochim Biophys Acta 1503(1–2):210–228
Robblee JH, Messinger J, Cinco RM, McFarlane KL, Fernandez C, Pizarro SA, Sauer K, Yachandra VK (2002) The Mn cluster in the S0 state of the oxygen-evolving complex of photosystem II studied by EXAFS spectroscopy: are there three di-µ-oxo-bridged Mn2 moieties in the tetranuclear Mn complex? J Am Chem Soc 124:7459–7471
Roncel M, Boussac A, Zurita JL, Bottin H, Sugiura M, Kirilovsky D, Ortega JM (2003) Redox properties of the photosystem II cytochromes b559 and c550 in the cyanobacterium Thermosynechococcus elongatus. J Biol Inorg Chem 8:206–216
Ryckaert J-P, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23(3):327–341. doi:10.1016/0021-9991(77)90098-5
Saito K, Shen J-R, Ishida T, Ishikita H (2011) Short hydrogen-bond between redox-active tyrosine YZ and D1-His190 in the photosystem II crystal structure. Biochemistry 50:9836–9844
Saito K, Rutherford AW, Ishikita H (2015) Energetics of proton release on the first oxidation step in the water-oxidizing enzyme. Nat Commun 6:8488. doi:10.1038/ncomms9488
Shen JR (2015) The structure of photosystem II and the mechanism of water oxidation in photosynthesis. Annu Rev Plant Biol 66:23–48. doi:10.1146/annurev-arplant-050312-120129
Shen J-R, Inoue Y (1993) Binding and functional properties of two new extrinsic components, cytochrome c-550 and a 12-kDa protein, in cyanobacterial photosystem II. Biochemistry 32:1825–1832
Sindhikara DJ, Yoshida N, Hirata F (2012) Placevent: an algorithm for prediction of explicit solvent atom distribution. J Comput Chem 33:1536–1543
Stuchebrukhov AA (2009) Mechanisms of proton transfer in proteins: localized charge transfer versus delocalized soliton transfer. Phys Rev E Stat Nonlin Soft Matter Phys 79(3 Pt 1):031927
Suga M, Akita F, Hirata K, Ueno G, Murakami H, Nakajima Y, Shimizu T, Yamashita K, Yamamoto M, Ago H, Shen JR (2015) Native structure of photosystem II at 1.95 A resolution viewed by femtosecond X-ray pulses. Nature 517:99–103
Takaoka T, Sakashita N, Saito K, Ishikita H (2016) pK a of a proton-conducting water chain in photosystem II. J Phys Chem Lett 7(10):1925–1932. doi:10.1021/acs.jpclett.6b00656
Tanokura M (1983a) 1H-NMR study on the tautomerism of the imidazole ring of histidine residues. I. Microscopic pK values and molar ratios of tautomers in histidine-containing peptides. Biochim Biophys Acta 742(3):576–585
Tanokura M (1983b) 1H-NMR study on the tautomerism of the imidazole ring of histidine residues. II. Microenvironments of histidine-12 and histidine-119 of bovine pancreatic ribonuclease A. Biochim Biophys Acta 742(3):586–596
Tanokura M (1983c) 1H nuclear magnetic resonance titration curves and microenvironments of aromatic residues in bovine pancreatic ribonuclease A. J Biochem 94(1):51–62
Tohri A, Dohmae N, Suzuki T, Ohta H, Inoue Y, Enami I (2004) Identification of domains on the extrinsic 23 kDa protein possibly involved in electrostatic interaction with the extrinsic 33 kDa protein in spinach photosystem II. Eur J Biochem 271(5):962–971
Tomita M, Ifuku K, Sato F, Noguchi T (2009) FTIR evidence that the PsbP extrinsic protein induces protein conformational changes around the oxygen-evolving Mn cluster in photosystem II. Biochemistry 48(27):6318–6325. doi:10.1021/bi9006308
Umena Y, Kawakami K, Shen J-R, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55–60
Vassiliev S, Zaraiskaya T, Bruce D (2012) Exploring the energetics of water permeation in photosystem II by multiple steered molecular dynamics simulations. Biochim Biophys Acta 1817(9):1671–1678
Watanabe HC, Welke K, Sindhikara DJ, Hegemann P, Elstner M (2013) Towards an understanding of channelrhodopsin function: simulations lead to novel insights of the channel mechanism. J Mol Biol 425(10):1795–1814. doi:10.1016/j.jmb.2013.01.033
Wei X, Su X, Cao P, Liu X, Chang W, Li M, Zhang X, Liu Z (2016) Structure of spinach photosystem II-LHCII supercomplex at 3.2 Å resolution. Nature 534(7605):69–74. doi:10.1038/nature18020
Wietek J, Wiegert JS, Adeishvili N, Schneider F, Watanabe H, Tsunoda SP, Vogt A, Elstner M, Oertner TG, Hegemann P (2014) Conversion of channelrhodopsin into a light-gated chloride channel. Science 344(6182):409–412. doi:10.1126/science.1249375
Wu YJ, Tepper HL, Voth GA (2006) Flexible simple point-charge water model with improved liquid-state properties. J Chem Phys 124 (2). doi:10.1063/1.2136877
Yamanaka S, Isobe H, Kanda K, Saito T, Umena Y, Kawakami K, Shen J-R, Kamiya N, Okumura M, Nakamura H, Yamaguchi K (2011) Possible mechanisms for the O–O bond formation in oxygen evolution reaction at the CaMn4O5(H2O)4 cluster of PSII refined to 1.9 Å X-ray resolution. Chem Phys Lett 511:138–145
Acknowledgements
This research was supported by JST CREST, JSPS KAKENHI (JP15H00864, JP16H06560, JP26105012, and JP26711008), Materials Integration for engineering polymers of Cross-ministerial Strategic Innovation Promotion Program (SIP), and Interdisciplinary Computational Science Program in CCS, University of Tsukuba. Theoretical calculations were partly performed using Research Center for Computational Science, Okazaki, Japan.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sakashita, N., Watanabe, H.C., Ikeda, T. et al. Structurally conserved channels in cyanobacterial and plant photosystem II. Photosynth Res 133, 75–85 (2017). https://doi.org/10.1007/s11120-017-0347-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11120-017-0347-1