Photosynthesis Research

, Volume 133, Issue 1–3, pp 273–287 | Cite as

The photosynthetic cytochrome c 550 from the diatom Phaeodactylum tricornutum

  • Pilar Bernal-Bayard
  • Leonor Puerto-Galán
  • Inmaculada Yruela
  • Inés García-Rubio
  • Carmen Castell
  • José M. Ortega
  • Pablo J. Alonso
  • Mercedes Roncel
  • Jesús I. Martínez
  • Manuel Hervás
  • José A. Navarro
Original Article


The photosynthetic cytochrome c 550 from the marine diatom Phaeodactylum tricornutum has been purified and characterized. Cytochrome c 550 is mostly obtained from the soluble cell extract in relatively large amounts. In addition, the protein appeared to be truncated in the last hydrophobic residues of the C-terminus, both in the soluble cytochrome c 550 and in the protein extracted from the membrane fraction, as deduced by mass spectrometry analysis and the comparison with the gene sequence. Interestingly, it has been described that the C-terminus of cytochrome c 550 forms a hydrophobic finger involved in the interaction with photosystem II in cyanobacteria. Cytochrome c 550 was almost absent in solubilized photosystem II complex samples, in contrast with the PsbO and Psb31 extrinsic subunits, thus suggesting a lower affinity of cytochrome c 550 for the photosystem II complex. Under iron-limiting conditions the amount of cytochrome c 550 decreases up to about 45% as compared to iron-replete cells, pointing to an iron-regulated synthesis. Oxidized cytochrome c 550 has been characterized using continuous wave EPR and pulse techniques, including HYSCORE, and the obtained results have been interpreted in terms of the electrostatic charge distribution in the surroundings of the heme centre.


Cytochrome c550 Phaeodactylum Photosystem II EPR Hemeprotein 





Cytochrome c 550


Cytochrome c 6


Continuous wave


Electron paramagnetic resonance


Hyperfine sublevel correlation spectroscopy


Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry


Photosystem II



The authors thank Rocío Rodríguez (Proteomic Service, IBVF) for technical assistance, and Prof. Tatsuya Tomo (Tokyo University of Science, Japan) for the Psb31 antibodies.


This work was supported by the Spanish Ministry of Economy and Competitiveness (BIO2012-35271, BIO2015-64169-P, MAT2011-23861 and CTQ2015-64486-R) the Andalusian Government (PAIDI BIO-022) and the Aragón Government (Grupo consolidado B-18). All these grants were partially financed by the EU FEDER Program.

Supplementary material

11120_2016_327_MOESM1_ESM.tiff (22.6 mb)
Supplementary material 1 (TIFF 23191 KB)
11120_2016_327_MOESM2_ESM.tiff (17.4 mb)
Supplementary material 2 (TIFF 17867 KB)
11120_2016_327_MOESM3_ESM.tiff (17.6 mb)
Supplementary material 3 (TIFF 17988 KB)
11120_2016_327_MOESM4_ESM.tiff (17.3 mb)
Supplementary material 4 (TIFF 17738 KB)


  1. Ago H, Adachi H, Umena Y, Tashiro T, Kawakami K, Kamiya N, Tian L, Han G, Kuang T, Liu Z, Wang F, Zou H, Enami I, Miyano M, Shen J-R (2016) Novel features of eukaryotic photosystem II revealed by its crystal structure analysis from a red alga. J Biol Chem 291:5676–5687CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alam J, Sprinkle MA, Hermodson MA, Krogmann DW (1984) Characterization of cytochrome c-550 from cyanobacteria. Biochim Biophys Acta 766:317–321CrossRefGoogle Scholar
  3. Allen AE, Laroche J, Maheswari U, Lommer M, Schauer N, Lopez PJ, Finazzi G, Fernie AR, Bowler C (2008) Whole-cell response of the pennate diatom Phaeodactylum tricornutum to iron starvation. Proc Natl Acad Sci USA 105:10438–10443CrossRefPubMedPubMedCentralGoogle Scholar
  4. Alonso PJ, Martínez JI (2015) Magnetic properties of a Kramers doublet. An univocal bridge between experimental results and theoretical predictions. J Magn Res 255:1–14CrossRefGoogle Scholar
  5. Alonso PJ, Martínez JI, García-Rubio I (2007) The study of the ground state Kramers doublet of low-spin heminic system revisited. A comprehensive description of the EPR and Mössbauer spectra. Coord Chem Rev 152:12–24CrossRefGoogle Scholar
  6. Arnon DI (1949) Copper enzymes in isolated chloroplasts. Plant Physiol 24:1–15CrossRefPubMedPubMedCentralGoogle Scholar
  7. Aro EM, Virgin I, Andersson B (1993) Photoinhibition of Photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1143:113–134CrossRefPubMedGoogle Scholar
  8. Bernal-Bayard P, Molina-Heredia FP, Hervás M, Navarro JA (2013) Photosystem I reduction in diatoms: as complex as the green lineage systems but less efficient. Biochemistry 52:8687–8695CrossRefPubMedGoogle Scholar
  9. Bowler C, Allen AE, Badger JH et al (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244CrossRefPubMedGoogle Scholar
  10. Bowler C, Vardi A, Allen AE (2010) Oceanographic and biogeochemical insights from diatom genomes. Ann Rev Mar Sci 2:333–365CrossRefPubMedGoogle Scholar
  11. Bricker TM, Roose JL, Fagerlund RD, Frankel LK, Eaton-Rye JJ (2012) The extrinsic proteins of Photosystem II. Biochim Biophys Acta 1817:121–142CrossRefPubMedGoogle Scholar
  12. Bumba L, Havelková-Dousová H, Husák M, Vácha F (2004) Structural characterization of photosystem II complex from red alga Porphyridium cruentum retaining extrinsic subunits of the oxygen-evolving complex. Eur J Biochem 271:2967–2975CrossRefPubMedGoogle Scholar
  13. Crimmins DL, Mische SM, Denslow ND (2005) Chemical cleavage of proteins in solution. Curr Protoc Protein Sci Supp. 41:11.4.1–11.4.11CrossRefGoogle Scholar
  14. Durán RV, Hervás M, De la Rosa MA, Navarro JA (2005) In vivo photosystem I reduction in thermophilic and mesophilic cyanobacteria: The thermal resistance of the process is limited by factors other than the unfolding of the partners. Biochem Biophys Res Commun 334:170–175CrossRefPubMedGoogle Scholar
  15. Enami I, Murayama H, Ohta H, Kamo M, Nakazato K, Shen J-R (1995) Isolation and characterizaton of a photosystem II complex from a red alga Cyanidium caldarium: association of cytochrome c-550 and a 12 kDa protein with the complex. Biochim Biophys Acta 1232:208–216CrossRefPubMedGoogle Scholar
  16. Enami I, Kikuchi S, Fukuda T, Ohta H, Shen J-R (1998) Binding and functional properties of four extrinsic proteins of photosystem II from a red alga, Cyanidium caldarium, as studied by release-reconstitution experiments. Biochemistry 37:2787–2793CrossRefPubMedGoogle Scholar
  17. Enami I, Iwai M, Akiyama A, Suzuki T, Okumura A, Katoh T, Tada O, Ohta H, Shen J-R (2003) Comparison of binding and functional properties of two extrinsic components, Cyt c550 and a 12 kDa protein, in cyanobacterial PSII with those in red algal PSII. Plant Cell Physiol 44:820–827CrossRefPubMedGoogle Scholar
  18. Enami I, Okumura A, Nagao R, Suzuki T, Iwai M, Shen J-R (2008) Structures and functions of the extrinsic proteins of photosystem II from different species. Photosynth Res 98:349–363CrossRefPubMedGoogle Scholar
  19. Evans PK, Krogmann DW (1983) Three c-type cytochromes from the red alga Porphyridium cruentum. Arch Biochem Biophys 227:494–510CrossRefPubMedGoogle Scholar
  20. Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen evolving center. Science 303:1831–1838CrossRefPubMedGoogle Scholar
  21. Frazão C, Enguita FJ, Coelho R, Sheldrick GM, Navarro JA, Hervás M, De la Rosa MA, Carrondo MA (2001) Crystal structure of low-potential cytochrome c 549 from Synechocystis sp. PCC 6803 at 1.21 Å resolution. J Biol Inorg Chem 6:324–332CrossRefPubMedGoogle Scholar
  22. García-Rubio I, Martínez JI, Picorel R, Yruela I, Alonso PJ (2003) HYSCORE spectroscopy in the cytochrome b(559) of the photosystem II reaction center. J Am Chem Soc 125:15846–15854CrossRefPubMedGoogle Scholar
  23. Goldman JC, McCarthy JJ (1978) Steady state growth and ammonium uptake of a fast-growing marine diatom 1. Limnol Oceanogr 23:695–703CrossRefGoogle Scholar
  24. Griffith JS (1957) Theory of electron resonance in ferrihaemoglobin azide. Nature 180:30–31CrossRefPubMedGoogle Scholar
  25. Grouneva I, Rokka A, Aro E-M (2011) The thylakoid membrane proteome of two marine diatoms outlines both diatom-specific and species-specific features of the photosynthetic machinery. J Proteome Res 10:5338–5353CrossRefPubMedGoogle Scholar
  26. Grouneva I, Gollan PJ, Kangasjärvi S, Suorsa M, Tikkanen M, Aro E-M (2013) Phylogenetic viewpoints on regulation of light harvesting and electron transport in eukaryotic photosynthetic organisms. Planta 237:399–412CrossRefPubMedGoogle Scholar
  27. Guerrero F, Sedoud A, Kirilovsky D, Rutherford AW, Ortega JM, Roncel M (2011) A high redox potential form of cytochrome c 550 in Photosystem II from Thermosynechococcus elongatus. J Biol Chem 286:5985–5994CrossRefPubMedGoogle Scholar
  28. Guerrero F, Zurita JL, Roncel M, Kirilovsky D, Ortega JM (2014) The role of the high potential form of the cytochrome b 559: study of Thermosynechococcus elongatus mutants. Biochim Biophys Acta 1837:908–919CrossRefPubMedGoogle Scholar
  29. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modelling. Electrophoresis 18:2714–2723CrossRefPubMedGoogle Scholar
  30. Haehnel W, Ratajczak R, Robenek H (1989) Lateral distribution and diffusion of plastocyanin in chloroplast thylakoids. J Cell Biol 108:1397–1405CrossRefPubMedGoogle Scholar
  31. Ifuku K, Noguchi T (2016) Structural coupling of extrinsic proteins with the oxygen-evolving center in photosystem II. Front Plant Sci 7:84CrossRefPubMedPubMedCentralGoogle Scholar
  32. Ioanitescu AI, Van Doorslaer S, Dewilde S, Endeward B, Moens L (2007) Probing the heme-pocket structure of the paramagnetic forms of cytoglobin and a distal histidine mutant using electron paramagnetic resonance. Mol Phys 105:2073–2086CrossRefGoogle Scholar
  33. Jeffrey S, Humphrey G (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanzen 167:191–194CrossRefGoogle Scholar
  34. Kang C, Chitnis RP, Smith S, Krogmann DW (1994) Cloning and sequence analysis of the gene encoding the low potential cytochrome c of Synechocystis PCC 6803. FEBS Lett 344:5–9CrossRefPubMedGoogle Scholar
  35. Kato Y, Sakamoto W (2010) New insights into the types and function of proteases in plastids. Int Rev Cell Mol Biol 280:185–218CrossRefPubMedGoogle Scholar
  36. Kelley LA, Sternberg MJE (2009) Protein structure prediction on the web: a case study using the Phyre server. Nat Protoc 4:363–371CrossRefPubMedGoogle Scholar
  37. Kerfeld CA, Krogmann DW (1998) Photosynthetic cytochromes c in cyanobacteria, algae and plants. Annu Rev Plant Physiol Plant Mol Biol 49:397–425CrossRefPubMedGoogle Scholar
  38. Kerfeld CA, Sawaya MR, Bottin H, Tran KT, Sugiura M, Cascio D, Desbois A, Yeates TO, Kirilovsky D, Boussac A (2003) Structural and EPR characterization of the soluble form of cytochrome c-550 and of the psbV2 gene product from the cyanobacterium Thermosynechococcus elongatus. Plant Cell Physiol 44:697–706CrossRefPubMedGoogle Scholar
  39. Key T, McCarthy A, Campbell DA, Six C, Roy S, Finkel ZV (2010) Cell size trade-offs govern light exploitation strategies in marine phytoplankton. Environ Microbiol 12:95–104CrossRefPubMedGoogle Scholar
  40. Kienzel PF, Peschek GA (1983) Cytochrome c-549: an endogenous cofactor of cyclic photophosphorylation in the cyanobacterium Anacystis nidulans. FEBS Lett 162:76–80CrossRefGoogle Scholar
  41. Kirilovsky D, Roncel M, Boussac A, Wilson A, Zurita JL, Ducruet JM, Bottin H, Sugiura M, Ortega JM, Rutherford AW (2004) Cytochrome c 550 in the cyanobacterium Thermosynechococcus elongatus: study of redox mutants. J Biol Chem 279:52869–52880CrossRefPubMedGoogle Scholar
  42. Kooistra WHCF, Gersonde R, Medlin LK, Mann DG. (2007) The origin and evolution of the diatoms: their adaptation to a planktonic existence. In: Falkowski PG, Knoll AH (eds) Evolution of primary producers in the sea, Academic Press Inc., Oxford pp. 207–249CrossRefGoogle Scholar
  43. Krogmann DW (1991) The low-potential cytochrome c of cyanobacteria and algae. Biochim Biophys Acta 1058:35–37CrossRefPubMedGoogle Scholar
  44. Lavaud J, Six C, Campbell DA (2016) Photosystem II repair in marine diatoms with contrasting photophysiologies. Photosynth Res 127:189–199CrossRefPubMedGoogle Scholar
  45. Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438:1040–1044CrossRefPubMedGoogle Scholar
  46. Martínez-Fábregas J, Díaz-Moreno I, González-Arzola K, Janocha S, Navarro JA, Hervás M, Bernhardt R, Velázquez-Campoy A, Díaz-Quintana A, De la Rosa MA (2014) Structural and functional analysis of novel human cytochrome c targets in apoptosis. Mol Cell Proteomics 13:1439–1456CrossRefPubMedPubMedCentralGoogle Scholar
  47. Martinson TA, Ikeuchi M, Plumley FG (1998) Oxygen-evolving diatom thylakoid membranes. Biochim Biophys Acta 1409:72–86CrossRefPubMedGoogle Scholar
  48. McLachlan J (1964) Some considerations of the growth of marine algae in artificial media. Can J Microbiol 10:769–782CrossRefPubMedGoogle Scholar
  49. Molina-Heredia FP, Hervás M, Navarro JA, De la Rosa MA (1998) Cloning and correct expression in Escherichia coli of the petE and petJ genes respectively encoding plastocyanin and cytochrome c 6 from the cyanobacterium Anabaena sp. PCC 7119. Biochem Biophys Res Commun 243:302–306CrossRefPubMedGoogle Scholar
  50. Moore JK, Doney SC, Glover DM, Fung IY (2002) Iron cycling and nutrient-limitation patterns in surface waters of the world ocean. Deep Sea Res II(49):463–507Google Scholar
  51. Morand LZ, Cheng RH, Krogmann DW (1994) Soluble electron transfer catalysts of cyanobacteria. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer, Dordrecht, pp 381–407CrossRefGoogle Scholar
  52. Morrissey J, Bowler C (2012) Iron utilization in marine cyanobacteria and eukaryotic algae. Front Microbiol 3:1–13CrossRefGoogle Scholar
  53. Nagao R, Ishii A, Tada O, Suzuki T, Dohmae N, Okumura A, Iwai M, Takahashi T, Kashino Y, Enami I (2007) Isolation and characterization of oxygen-evolving thylakoid membranes and Photosystem II particles from a marine diatom Chaetoceros gracilis. Biochim Biophys Acta 1767:1353–1362CrossRefPubMedGoogle Scholar
  54. Nagao R, Moriguchi A, Tomo T, Niikura A, Nakajima S, Suzuki T, Okumura A, Iwai M, Shen J-R, Ikeuchi M, Enami I (2010a) Binding and functional properties of five extrinsic proteins in oxygen-evolving photosystem II from a marine centric diatom, Chaetoceros gracilis. J Biol Chem 285:29191–29199Google Scholar
  55. Nagao R, Tomo T, Noguchi E, Nakajima S, Suzuki T, Okumura A, Kashino Y, Mimuro M, Ikeuchi M, Enami I (2010b) Purification and characterization of a stable oxygen-evolving Photosystem II complex from a marine centric diatom, Chaetoceros gracilis. Biochim Biophys Acta 1797:160–166Google Scholar
  56. Nagao R, Tomo T, Noguchi E, Suzuki T, Okumura A, Narikawa R, Enami I, Ikeuchi M (2012) Proteases are associated with a minor fucoxanthin chlorophyll a/c-binding protein from the diatom Chaetoceros gracilis. Biochim Biophys Acta 1817:2110–2117CrossRefPubMedGoogle Scholar
  57. Nagao R, Tomo T, Narikawa R, Enami I, Ikeuchi M (2013) Light-independent biosynthesis and assembly of the photosystem II complex in the diatom Chaetoceros gracilis. FEBS Lett 587:1340–1345CrossRefPubMedGoogle Scholar
  58. Nagao R, Tomo T, Noguchi E (2015) Effects of extrinsic proteins on the protein conformation of the oxygen-evolving center in cyanobacterial photosystem II as revealed by Fourier transform infrared spectroscopy. Biochemistry 54:2022–2031CrossRefPubMedGoogle Scholar
  59. Nagao R, Tomo T, Narikawa R, Enami I, Ikeuchi M (2016) Conversion of photosystem II dimer to monomers during photoinhibition is tightly coupled with decrease in oxygen-evolving activity in the diatom Chaetoceros gracilis. Photosynth Res 130:83–91CrossRefPubMedGoogle Scholar
  60. Navarro JA, Hervás M, De la Rosa MA (2011) Purification of plastocyanin and cytochrome c6 from plants, green algae and cyanobacteria. In: Carpentier R (ed) Photosynthesis protocols, vol 684. Humana Press, Totowa, pp 79–94Google Scholar
  61. Navarro JA, Hervás M, De la Cerda B, De la Rosa MA (1995) Purification and physicochemical properties of the low potential cytochrome c549 from the cyanobacterium Synechocystis sp. PCC 6803. Arch Biochem Biophys 3186:46–52CrossRefGoogle Scholar
  62. Nunn BL, Faux JF, Hippmann AA, Maldonado MT, Harvey HR, Goodlett DR, Boyd PW, Strzepek RF (2013) Diatom proteomics reveals unique acclimation strategies to mitigate Fe limitation. PLoS ONE 8: e75653CrossRefPubMedPubMedCentralGoogle Scholar
  63. Okumura A, Nagao R, Suzuki T, Yamagoe S, Iwai M, Nakazato K, Enami I (2008) A novel protein in Photosystem II of a diatom Chaetoceros gracilis is one of the extrinsic proteins located on lumenal side and directly associates with PSII core components. Biochim Biophys Acta 1777:1545–1551CrossRefPubMedGoogle Scholar
  64. Peisach J, Blumberg WE, Adler A (1973) Electron paramagnetic resonance studies of iron porphin and chlorin systems. Ann NY Acad Sci 206:310–327CrossRefPubMedGoogle Scholar
  65. Quinn R, Valentine JS, Byrn MP, Strouse CE (1987) Electronic-structure of low-spin ferric porphyrins: A single-crystal EPR and structural investigation of the influence of axial ligand orientation and the effects of pseudo-Jahn–Teller distortion. J Am Chem Soc 109:3301–3308CrossRefGoogle Scholar
  66. Roncel M, Boussac A, Zurita JL, Bottin H, Sugiura M, Kirilovsky D, Ortega JM (2003) Redox properties of the photosystem II cytochromes b 559 and c 550 in the cyanobacterium Thermosynechococcus elongatus. J Biol Inorg Chem 8:206–216CrossRefPubMedGoogle Scholar
  67. Roncel M, Kirilovsky D, Guerrero F, Serrano A, Ortega JM (2012) Photosynthetic cytochrome c550. Biochim Biophys Acta 1817:1152–1163CrossRefPubMedGoogle Scholar
  68. Roncel M, González-Rodríguez AA, Naranjo B, Bernal-Bayard P, Lindahl AM, Hervás M, Navarro JA, Ortega JM (2016) Iron deficiency induces a partial inhibition of the photosynthetic electron transport and a high sensitivity to light in the diatom Phaeodactylum tricornutum. Front Plant Sci 7:1050CrossRefPubMedPubMedCentralGoogle Scholar
  69. Sawaya MR, Krogmann DW, Serag A, Ho KK, Yeates TO, Kerfeld CA (2001) Structures of cytochrome c-549 and cytochrome c6 from the cyanobacterium Arthrospira maxima. Biochemistry 40:9215–9225CrossRefPubMedGoogle Scholar
  70. Schweiger A, Jeschke G. (2001) Principles of pulse electron paramagnetic resonance. Oxford University Press, OxfordGoogle Scholar
  71. Sechi S, Chait BT (1998) Modification of cysteine residues by alkylation. A tool in peptide mapping and protein identification. Anal Chem 70:5150–5158CrossRefPubMedGoogle Scholar
  72. Shen J-R (2015) The structure of photosystem II and the mechanism of water oxidation in photosynthesis. Annu Rev Plant Biol 66:23–48CrossRefPubMedGoogle Scholar
  73. Shen J-R, Inoue Y (1993) Binding and functional properties of two new extrinsic components, cytochrome c-550 and a 12-kDa protein, in cyanobacterial photosystem II. Biochemistry 32:1825–1832CrossRefPubMedGoogle Scholar
  74. Shen J-R, Qian M, Inoue Y, Burnap RL (1998) Functional characterization of Synechocystis sp. 6803 ∆psbU and ∆psbV mutants reveals important roles of cytochrome c-550 in cyanobacterial oxygen evolution. Biochemistry 37:1551–1558CrossRefPubMedGoogle Scholar
  75. Shimazaki K, Takamiya K, Nishimura M (1978) Studies on electron transfer systems in the marine diatom Phaeodactylum tricornutum. I. Isolation and characterization of cytochromes. J Biochem 83:1631–1638CrossRefPubMedGoogle Scholar
  76. Suga M, Lai T-L, Sugiura M, Shen J-R, Boussac A (2013) Crystal structure at 1.5 Å resolution of the PsbV2 cytochrome from the cyanobacterium Thermosynechococcus elongatus. FEBS Lett 587:3267–3272CrossRefPubMedGoogle Scholar
  77. Takaoka T, Sakashita N, Saito K, Ishikita H (2016) pKa of a proton-conducting water chain in photosystem II. ‎J Phys Chem Lett 7:1925–1932CrossRefPubMedGoogle Scholar
  78. Taylor CPS (1977) The EPR of low spin heme complexes. Relation of the t2g hole model to the directional properties of the g tensor, and a new method for calculating the ligand field parameters. Biochim Biophys Acta 491:137–149CrossRefPubMedGoogle Scholar
  79. Umena Y, Kawakami K, Shen J-R, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55–60CrossRefPubMedGoogle Scholar
  80. Van Doorslaer S, Tilleman L, Verrept B, Dewilde S (2012) Marked difference in the electronic structure of cyanide-ligated ferric protoglobins and myoglobin due to heme ruffling. Inorg Chem 51:8834–8841CrossRefPubMedGoogle Scholar
  81. Vogt L, Vinyard DJ, Khan S, Brudvig GW (2015) Oxygen-evolving complex of Photosystem II: an analysis of second-shell residues and hydrogen-bonding networks. Curr Opin Chem Biol 25:152–158CrossRefPubMedGoogle Scholar
  82. Vrettos JS, Reifler MJ, Kievit O, Lakshmi KV, Lakshmi JC, de Paula JC, Brudvig GW (2001) Factors that determine the unusually low reduction potential of cytochrome c550 in cyanobacterial photosystem II. J Biol Inorg Chem 6:708–716CrossRefPubMedGoogle Scholar
  83. Walker FA, Huynh BH, Scheidt WR, Osvath RS (1986) Models of the cytochromes b. Effect of axial ligand plane orientation on the EPR and Mössbauer spectra of low-spin ferrihemes. J Am Chem Soc 108:5288–5297CrossRefGoogle Scholar
  84. Wu H, Cockshutt AM, McCarthy A, Campbell DA (2011) Distinctive photosystem II photoinactivation and protein dynamics in marine diatoms. Plant Physiol 156:2184–2195CrossRefPubMedPubMedCentralGoogle Scholar
  85. Yruela I, García-Rubio I, Roncel M, Martínez JI, Ramiro MV, Ortega JM, Alonso PJ, Picorel R (2003) Detergent effect on cytochrome b 559 electron paramagnetic resonance signals in the photosystem II reaction centre. Photochem Photobiol Sci 2:437–442CrossRefPubMedGoogle Scholar
  86. Zouni A, Witt HT, Kern J, Fromme P, Krauss N, Saenger W, Orth P (2001) Crystal structure of oxygen evolving Photosystem II from Synechococcus elongatus a 3.8 Å resolution. Nature 409:739–743CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la CartujaUniversidad de Sevilla & CSICSevillaSpain
  2. 2.Estación Experimental de Aula Dei, EEAD-CSICZaragozaSpain
  3. 3.Centro Universitario de la DefensaZaragozaSpain
  4. 4.Laboratory of Physical ChemistryETH ZurichZurichSwitzerland
  5. 5.Instituto de Ciencia de Materiales de AragónUniversidad de Zaragoza & CSICZaragozaSpain

Personalised recommendations