Skip to main content

Advertisement

Log in

A two-component nonphotochemical fluorescence quenching in eustigmatophyte algae

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Eustigmatophyte algae represent an interesting model system for the study of the regulation of the excitation energy flow due to their use of violaxanthin both as a major light-harvesting pigment and as the basis of xanthophyll cycle. Fluorescence induction kinetics was studied in an oleaginous marine alga Nannochloropsis oceanica. Nonphotochemical fluorescence quenching was analyzed in detail with respect to the state of the cellular xanthophyll pool. Two components of nonphotochemical fluorescence quenching (NPQ), both dependent on the presence of zeaxanthin, were clearly resolved, denoted as slow and fast NPQ based on kinetics of their formation. The slow component was shown to be in direct proportion to the amount of zeaxanthin, while the fast NPQ component was transiently induced in the presence of membrane potential on subsecond timescales. The applicability of these observations to other eustigmatophyte species is demonstrated by measurements of other representatives of this algal group, both marine and freshwater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AL:

Actinic illumination

Ant:

Antheraxanthin

Chl:

Chlorophyll

DCMU:

3-(3,4-Dichlorophenyl)-1,1-dimethylurea

DEPS:

Xanthophyll pool de-epoxidation state

NPQ:

Nonphotochemical (Chl a fluorescence) quenching

PSII:

Photosystem II

SP:

Saturating pulse

Vio:

Violaxanthin

Zea:

Zeaxanthin

References

  • Bailleul B, Rogato A, de Martino A, Coesel S, Cardole P, Bowler C, Falciatore A, Finazzi G (2010) An atypical member of the light-harvesting complex stress-related protein family modulates diatom responses to light. Proc Natl Acad Sci USA 107:18214–18219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berera R, van Stokkum IHM, d’Haene S, Kennis JTM, van Grondelle R, Dekker JP (2009) A mechanism of energy dissipation in Cyanobacteria. Biophys J 96:2261–2267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bilger W, Schreiber U (1986) Energy-dependent quenching of dark-level chlorophyll fluorescence in intact leaves. Photosynth Res 10:303–308

    Article  CAS  PubMed  Google Scholar 

  • Bína D, Litvín R, Vácha F (2009) Kinetics of in vivo bacteriochlorophyll fluorescence yield and the state of photosynthetic apparatus of purple bacteria. Photosynth Res 99:115–125

    Article  PubMed  Google Scholar 

  • Bína D, Gardian Z, Herbstová M, Kotabová E, Koník P, Litvín R, Prášil O, Tichý J, Vácha F (2014) Novel type of red-shifted chlorophyll a antenna complex from Chromera velia II. Biochemistry and spectroscopy. Biochim Biophys Acta 1837:802–810

    Article  PubMed  Google Scholar 

  • Cao S, Zhang X, Xu D, Fan X, Mou S, Wanga Y, Ye N, Wang W (2013) A transthylakoid proton gradient and inhibitors induce a non-photochemical fluorescence quenching in unicellular algae Nannochloropsis sp. FEBS Lett 587:1310–1315

    Article  CAS  PubMed  Google Scholar 

  • Dittami S, Michel G, Collén J, Boyen C, Tonon T (2010) Chlorophyll-binding proteins revisited—a multigenic family of light-harvesting and stress proteins from a brown algal perspective. Evol Biol 10:365

    CAS  Google Scholar 

  • Dong Y-L, Jiang T, Xia W, Dong H-P, Lu S-H, Cui L (2015) Light harvesting proteins regulate non-photochemical fluorescence quenching in the marine diatom Thalassiosira pseudonana. Algal Res 12:300–307

    Article  Google Scholar 

  • Fawley KP, Eliáš M, Fawley MW (2014) The diversity and phylogeny of the commercially important algal class Eustigmatophyceae, including the new clade Goniochloridales. J Appl Phycol 26:1773–1782

    Article  CAS  Google Scholar 

  • Fujii R, Kita M, Iinuma Y, Oka N, Takaesu Y, Taira T, Iha M, Cogdell RJ, Hashimoto H (2012) Isolation and purification of the major photosynthetic antenna, fucoxanthin-Chl a/c protein, from cultured discoid germilings of the brown Alga, Cladosiphon okamuranus TOKIDA (Okinawa Mozuku). Photosynth Res 111:157–163

    Article  CAS  PubMed  Google Scholar 

  • García-Mendoza E, Colombo-Pallotta MF (2007) The giant kelp Macrocystis pyrifera presents a different nonphotochemical quenching control than higher plants. New Phytol 173:526–536

    Article  PubMed  Google Scholar 

  • Garcia-Mendoza E, Ocampo-Alvarez H, Govindjee (2011) Photoprotection in the brown alga Macrocystis pyrifera: evolutionary implications. J Photochem Photobiol B 104:377–385

    Article  CAS  PubMed  Google Scholar 

  • Gentile M-P, Blanch HW (2001) Physiology and xanthophyll cycle activity of Nannochloropsis gaditana. Biotechnol Bioengy 75:1–12

    Article  CAS  Google Scholar 

  • Gilmore AM, Björkman O (1995) Temperature-sensitive coupling and uncoupling of ATP-mediated nonradiative energy dissipation: similarities between chloroplasts and leaves. Planta 197:646–654

    Article  CAS  Google Scholar 

  • Gilmore AM, Yamamoto HY (1993) Linear models relating xanthophylls and lumen acidity to non-photochemical fluorescence quenching. Evidence that antheraxanthin explains zeaxanthin-independent quenching. Photosynth Res 35:67–78

    Article  CAS  PubMed  Google Scholar 

  • Gilmore AM (1997) Mechanistic aspects of xanthophyll cycle-dependent photoprotection in higher plant chloroplasts and leaves. Physiol Plant 99:197–209

    Article  CAS  Google Scholar 

  • Goss R, Lepetit B (2015) Biodiversity of NPQ. J Plant Physiol 172:13–32

    Article  CAS  PubMed  Google Scholar 

  • Goss R, Böhme K, Wilhelm C (1998) The xanthophyll cycle of Mantoniella squamata converts violaxanthin into antheraxanthin but not to zeaxanthin: consequences for the mechanism of enhanced non-photochemical energy dissipation. Planta 205:613–621

    Article  CAS  Google Scholar 

  • Goss R, Lepetit B, Wilhelm C (2006) Evidence for a rebinding of antheraxanthin to the light-harvesting complex during the epoxidation reaction of the violaxanthin cycle. J Plant Physiol 163:585–590

    Article  CAS  PubMed  Google Scholar 

  • Grouneva I, Jakob T, Wilhelm C, Goss R (2008) A new multicomponent NPQ mechanism in the diatom Cyclotella meneghiniana. Plant Cell Physiol 49:1217–1225

    Article  CAS  PubMed  Google Scholar 

  • Grouneva I, Jakob T, Wilhelm C, Goss R (2009) The regulation of xanthophyll cycle activity and of non-photochemical fluorescence quenching by two alternative electron flows in the diatoms Phaeodactylum tricornutum and Cyclotella meneghiniana. Biochim Biophys Acta 1787:929–938

    Article  CAS  PubMed  Google Scholar 

  • Guillard RRL, Lorenzen CJ (1972) Yellow-green algae with chlorophyllide c. J Phycol 8:10–14

    CAS  Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239

    Article  CAS  PubMed  Google Scholar 

  • Gundermann K, Büchel C (2008) The fluorescence yield of the trimeric fucoxanthin-chlorophyll-protein FCPa in the diatom Cyclotella meneghiniana is dependent on the amount of bound diatoxanthin. Photosynth Res 95:229–235

    Article  CAS  PubMed  Google Scholar 

  • Herbstová M, Bína D, Koník P, Gardian Z, Vácha F, Litvín R (2015) Molecular basis of chromatic adaptation in pennate diatom Phaeodactylum tricornutum. Biochim Biophys Acta 1847:534–543

    Article  PubMed  Google Scholar 

  • Hohmann-Marriott MF, Blankenship RE (2007) Variable fluorescence in green sulfur bacteria. Biochim Biophys Acta 1767:106–113

    Article  CAS  PubMed  Google Scholar 

  • Jeffrey SW, Mantoura RFC, Wright SW (2005) Phytoplankton pigments in oceanography: guidelines to modern methods, 2nd edn. Monographs on oceanographic methodology, vol 10. UNESCO Publishing, Paris

  • Keşan G, Litvín R, Bína D, Durchan M, Šlouf V, Polívka T (2016) Efficient light-harvesting using non-carbonyl carotenoids: energy transfer dynamics in the VCP complex from Nannochloropsis oceanica. Biochim Biophys Acta 1857:370–379

    Article  PubMed  Google Scholar 

  • Kirilovsky D (2010) The photoactive orange carotenoid protein and photoprotection in cyanobacteria. Adv Exp Med Biol 675:139–159

    Article  CAS  PubMed  Google Scholar 

  • Konotchick T, Dupont CL, Valas RE, Badger JH, Allen AE (2013) Transcriptomic analysis of metabolic function in the giant kelp, Macrocystis pyrifera, across depth and season. New Phytol 198:398–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotabová E, Kaňa R, Jarešová J, Prášil O (2011) Non-photochemical fluorescence quenching in Chromera velia is enabled by fast violaxanthin de-epoxidation. FEBS Lett 585:1941–1945

    Article  PubMed  Google Scholar 

  • Lavaud J, Lepetit B (2013) An explanation for the inter-species variability of the photoprotective non-photochemical chlorophyll fluorescence quenching in diatoms. Biochim Biophys Acta 1827:294–302

    Article  CAS  PubMed  Google Scholar 

  • Lavaud J, Rousseau B, Etienne A-L (2002) In diatoms, a transthylakoid proton gradient alone is not sufficient to induce a non-photochemical fluorescence quenching. FEBS Lett 523:163–166

    Article  CAS  PubMed  Google Scholar 

  • Lepetit B, Volke D, Gilbert M, Wilhelm C, Goss R (2010) Evidence for the existence of one antenna-associated, lipid-dissolved and two protein-bound pools of diadinoxanthin cycle pigments in diatoms. Plant Physiol 154:1905–1920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li XP, Gilmore AM, Caffarri S, Bassi R, Golan T, Kramer D, Nyoigi KK (2004) Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein. J Biol Chem 279:22866–22874

    Article  CAS  PubMed  Google Scholar 

  • Litvín R, Bína D, Herbstová M, Gardian Z (2016) Architecture of the light harvesting apparatus of the eustigmatophyte alga Nannochloropsis oceanica. Photosynth Res. doi:10.1007/s11120-016-0234-1

    Google Scholar 

  • Lubián LM, Montero O (1998) Excess light-induced violaxanthin cycle activity in Nannochloropsis gaditana (Eustigmatophyceae): effects of exposure time and temperature. Phycologia 37:16–23

    Article  Google Scholar 

  • Müller P, Li X-P, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566

    Article  PubMed  PubMed Central  Google Scholar 

  • Nilkens M, Eugen Kress E, Lambrev P, Miloslavina Y, Müller M, Holzwarth AR, Jahns P (2010) Identification of a slowly inducible zeaxanthin-dependent component of non-photochemical quenching of chlorophyll fluorescence generated under steady-state conditions in Arabidopsis. Biochim Biophys Acta 1797:466–475

    Article  CAS  PubMed  Google Scholar 

  • Ocampo-Alvarez H, García-Mendoza E, Govindjee (2013) Antagonist effect between violaxanthin and de-epoxidated pigments in nonphotochemical quenching induction in the qE deficient brown alga Macrocystis pyrifera. Biochim Biophys Acta 1827:427–437

    Article  CAS  PubMed  Google Scholar 

  • Owens TG, Gallagher JC, Alberte RS (1987) Photosynthetic light harvesting function of violaxanthin in Nannochloropsis spp. (Eustigmatophyceae). J Phycol 23:79–85

    Article  CAS  Google Scholar 

  • Pan H, Šlapeta J, Carter D, Chen M (2012) Phylogenetic analysis of the light-harvesting system in Chromera velia. Photosynth Res 111:19–28

    Article  CAS  PubMed  Google Scholar 

  • Reynolds JM, Bruns BU, Fitt WK, Schmidt GW (2008) Enhanced photoprotection pathways in symbiotic dinoflagellates of shallow-water corals and other cnidarians. Proc Natl Acad Sci USA 105:13674–13678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roháček K, Bertrand M, Moreau B, Jacquette B, Caplat C, Morant-Manceau A, Schoefs B (2014) Relaxation of the non-photochemical chlorophyll fluorescence quenching in diatoms: kinetics, components and mechanisms. Phil Trans R Soc B 369:20130241

    Article  PubMed  PubMed Central  Google Scholar 

  • Simionato D, Sforza E, Carpinelli EC, Bertucco A, Giacometti GM, Morosinotto T (2011) Acclimation of Nannochloropsis gaditana to different illumination regimes: effects on lipids accumulation. Bioresour Technol 102:6026–6032

    Article  CAS  PubMed  Google Scholar 

  • Stransky H, Hager A (1970) The carotenoid pattern and the occurrence of the light-induced xanthophyll cycle in various classes of algae. II. Xanthophyceae. Arch Microbiol 71:164–190

    CAS  Google Scholar 

  • Ting CS, Owens TG (1994) The effects of excess irradiance on photosynthesis in the marine diatom Phaeodactylum tricornutum. Plant Physiol 106:763–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuyama M, Shibata M, Kawazu T, Kobayashi Y (2004) An analysis of the mechanism of the low-wave phenomenon of chlorophyll fluorescence. Photosynth Res 81:67–76

    Article  CAS  PubMed  Google Scholar 

  • Xyländer M, Hagen C (2002) ‘Low-waves’ in chlorophyll fluorescence kinetics indicate deprivation of bicarbonate. Photosynth Res 72:255–262

    Article  PubMed  Google Scholar 

  • Zapata M, Garrido JL, Jeffrey SW (2006) Chlorophyll c pigments: current status. In: Grimm B, Porra RJ, Rüdiger W, Scheer H (eds) Chlorophylls and Bacteriochlorophylls: biochemistry, biophysics, functions and applications. Kluwer, Dordrecht, pp 39–53

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by the Czech Science Foundation grant 14-01377P and by institutional funding RVO:60077344. K.B. was involved in the present work during his participation in a secondary school student scientific project competition. The authors would like to thank Vladimír Špunda for fruitful discussion on the ‘low-wave’ phenomenon. Expert technical assistance of Mr. František Matoušek is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radek Litvín.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1125 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bína, D., Bouda, K. & Litvín, R. A two-component nonphotochemical fluorescence quenching in eustigmatophyte algae. Photosynth Res 131, 65–77 (2017). https://doi.org/10.1007/s11120-016-0299-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-016-0299-x

Keywords

Navigation