Photosynthesis Research

, Volume 131, Issue 1, pp 65–77 | Cite as

A two-component nonphotochemical fluorescence quenching in eustigmatophyte algae

Original Article

Abstract

Eustigmatophyte algae represent an interesting model system for the study of the regulation of the excitation energy flow due to their use of violaxanthin both as a major light-harvesting pigment and as the basis of xanthophyll cycle. Fluorescence induction kinetics was studied in an oleaginous marine alga Nannochloropsis oceanica. Nonphotochemical fluorescence quenching was analyzed in detail with respect to the state of the cellular xanthophyll pool. Two components of nonphotochemical fluorescence quenching (NPQ), both dependent on the presence of zeaxanthin, were clearly resolved, denoted as slow and fast NPQ based on kinetics of their formation. The slow component was shown to be in direct proportion to the amount of zeaxanthin, while the fast NPQ component was transiently induced in the presence of membrane potential on subsecond timescales. The applicability of these observations to other eustigmatophyte species is demonstrated by measurements of other representatives of this algal group, both marine and freshwater.

Keywords

Chl a fluorescence Nonphotochemical quenching Xanthophyll cycle Nannochloropsis Eustigmatophyceae 

Abbreviations

AL

Actinic illumination

Ant

Antheraxanthin

Chl

Chlorophyll

DCMU

3-(3,4-Dichlorophenyl)-1,1-dimethylurea

DEPS

Xanthophyll pool de-epoxidation state

NPQ

Nonphotochemical (Chl a fluorescence) quenching

PSII

Photosystem II

SP

Saturating pulse

Vio

Violaxanthin

Zea

Zeaxanthin

Supplementary material

11120_2016_299_MOESM1_ESM.pdf (1.1 mb)
Supplementary material 1 (PDF 1125 kb)

References

  1. Bailleul B, Rogato A, de Martino A, Coesel S, Cardole P, Bowler C, Falciatore A, Finazzi G (2010) An atypical member of the light-harvesting complex stress-related protein family modulates diatom responses to light. Proc Natl Acad Sci USA 107:18214–18219CrossRefPubMedPubMedCentralGoogle Scholar
  2. Berera R, van Stokkum IHM, d’Haene S, Kennis JTM, van Grondelle R, Dekker JP (2009) A mechanism of energy dissipation in Cyanobacteria. Biophys J 96:2261–2267CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bilger W, Schreiber U (1986) Energy-dependent quenching of dark-level chlorophyll fluorescence in intact leaves. Photosynth Res 10:303–308CrossRefPubMedGoogle Scholar
  4. Bína D, Litvín R, Vácha F (2009) Kinetics of in vivo bacteriochlorophyll fluorescence yield and the state of photosynthetic apparatus of purple bacteria. Photosynth Res 99:115–125CrossRefPubMedGoogle Scholar
  5. Bína D, Gardian Z, Herbstová M, Kotabová E, Koník P, Litvín R, Prášil O, Tichý J, Vácha F (2014) Novel type of red-shifted chlorophyll a antenna complex from Chromera velia II. Biochemistry and spectroscopy. Biochim Biophys Acta 1837:802–810CrossRefPubMedGoogle Scholar
  6. Cao S, Zhang X, Xu D, Fan X, Mou S, Wanga Y, Ye N, Wang W (2013) A transthylakoid proton gradient and inhibitors induce a non-photochemical fluorescence quenching in unicellular algae Nannochloropsis sp. FEBS Lett 587:1310–1315CrossRefPubMedGoogle Scholar
  7. Dittami S, Michel G, Collén J, Boyen C, Tonon T (2010) Chlorophyll-binding proteins revisited—a multigenic family of light-harvesting and stress proteins from a brown algal perspective. Evol Biol 10:365Google Scholar
  8. Dong Y-L, Jiang T, Xia W, Dong H-P, Lu S-H, Cui L (2015) Light harvesting proteins regulate non-photochemical fluorescence quenching in the marine diatom Thalassiosira pseudonana. Algal Res 12:300–307CrossRefGoogle Scholar
  9. Fawley KP, Eliáš M, Fawley MW (2014) The diversity and phylogeny of the commercially important algal class Eustigmatophyceae, including the new clade Goniochloridales. J Appl Phycol 26:1773–1782CrossRefGoogle Scholar
  10. Fujii R, Kita M, Iinuma Y, Oka N, Takaesu Y, Taira T, Iha M, Cogdell RJ, Hashimoto H (2012) Isolation and purification of the major photosynthetic antenna, fucoxanthin-Chl a/c protein, from cultured discoid germilings of the brown Alga, Cladosiphon okamuranus TOKIDA (Okinawa Mozuku). Photosynth Res 111:157–163CrossRefPubMedGoogle Scholar
  11. García-Mendoza E, Colombo-Pallotta MF (2007) The giant kelp Macrocystis pyrifera presents a different nonphotochemical quenching control than higher plants. New Phytol 173:526–536CrossRefPubMedGoogle Scholar
  12. Garcia-Mendoza E, Ocampo-Alvarez H, Govindjee (2011) Photoprotection in the brown alga Macrocystis pyrifera: evolutionary implications. J Photochem Photobiol B 104:377–385CrossRefPubMedGoogle Scholar
  13. Gentile M-P, Blanch HW (2001) Physiology and xanthophyll cycle activity of Nannochloropsis gaditana. Biotechnol Bioengy 75:1–12CrossRefGoogle Scholar
  14. Gilmore AM, Björkman O (1995) Temperature-sensitive coupling and uncoupling of ATP-mediated nonradiative energy dissipation: similarities between chloroplasts and leaves. Planta 197:646–654CrossRefGoogle Scholar
  15. Gilmore AM, Yamamoto HY (1993) Linear models relating xanthophylls and lumen acidity to non-photochemical fluorescence quenching. Evidence that antheraxanthin explains zeaxanthin-independent quenching. Photosynth Res 35:67–78CrossRefPubMedGoogle Scholar
  16. Gilmore AM (1997) Mechanistic aspects of xanthophyll cycle-dependent photoprotection in higher plant chloroplasts and leaves. Physiol Plant 99:197–209CrossRefGoogle Scholar
  17. Goss R, Lepetit B (2015) Biodiversity of NPQ. J Plant Physiol 172:13–32CrossRefPubMedGoogle Scholar
  18. Goss R, Böhme K, Wilhelm C (1998) The xanthophyll cycle of Mantoniella squamata converts violaxanthin into antheraxanthin but not to zeaxanthin: consequences for the mechanism of enhanced non-photochemical energy dissipation. Planta 205:613–621CrossRefGoogle Scholar
  19. Goss R, Lepetit B, Wilhelm C (2006) Evidence for a rebinding of antheraxanthin to the light-harvesting complex during the epoxidation reaction of the violaxanthin cycle. J Plant Physiol 163:585–590CrossRefPubMedGoogle Scholar
  20. Grouneva I, Jakob T, Wilhelm C, Goss R (2008) A new multicomponent NPQ mechanism in the diatom Cyclotella meneghiniana. Plant Cell Physiol 49:1217–1225CrossRefPubMedGoogle Scholar
  21. Grouneva I, Jakob T, Wilhelm C, Goss R (2009) The regulation of xanthophyll cycle activity and of non-photochemical fluorescence quenching by two alternative electron flows in the diatoms Phaeodactylum tricornutum and Cyclotella meneghiniana. Biochim Biophys Acta 1787:929–938CrossRefPubMedGoogle Scholar
  22. Guillard RRL, Lorenzen CJ (1972) Yellow-green algae with chlorophyllide c. J Phycol 8:10–14Google Scholar
  23. Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239CrossRefPubMedGoogle Scholar
  24. Gundermann K, Büchel C (2008) The fluorescence yield of the trimeric fucoxanthin-chlorophyll-protein FCPa in the diatom Cyclotella meneghiniana is dependent on the amount of bound diatoxanthin. Photosynth Res 95:229–235CrossRefPubMedGoogle Scholar
  25. Herbstová M, Bína D, Koník P, Gardian Z, Vácha F, Litvín R (2015) Molecular basis of chromatic adaptation in pennate diatom Phaeodactylum tricornutum. Biochim Biophys Acta 1847:534–543CrossRefPubMedGoogle Scholar
  26. Hohmann-Marriott MF, Blankenship RE (2007) Variable fluorescence in green sulfur bacteria. Biochim Biophys Acta 1767:106–113CrossRefPubMedGoogle Scholar
  27. Jeffrey SW, Mantoura RFC, Wright SW (2005) Phytoplankton pigments in oceanography: guidelines to modern methods, 2nd edn. Monographs on oceanographic methodology, vol 10. UNESCO Publishing, ParisGoogle Scholar
  28. Keşan G, Litvín R, Bína D, Durchan M, Šlouf V, Polívka T (2016) Efficient light-harvesting using non-carbonyl carotenoids: energy transfer dynamics in the VCP complex from Nannochloropsis oceanica. Biochim Biophys Acta 1857:370–379CrossRefPubMedGoogle Scholar
  29. Kirilovsky D (2010) The photoactive orange carotenoid protein and photoprotection in cyanobacteria. Adv Exp Med Biol 675:139–159CrossRefPubMedGoogle Scholar
  30. Konotchick T, Dupont CL, Valas RE, Badger JH, Allen AE (2013) Transcriptomic analysis of metabolic function in the giant kelp, Macrocystis pyrifera, across depth and season. New Phytol 198:398–407CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kotabová E, Kaňa R, Jarešová J, Prášil O (2011) Non-photochemical fluorescence quenching in Chromera velia is enabled by fast violaxanthin de-epoxidation. FEBS Lett 585:1941–1945CrossRefPubMedGoogle Scholar
  32. Lavaud J, Lepetit B (2013) An explanation for the inter-species variability of the photoprotective non-photochemical chlorophyll fluorescence quenching in diatoms. Biochim Biophys Acta 1827:294–302CrossRefPubMedGoogle Scholar
  33. Lavaud J, Rousseau B, Etienne A-L (2002) In diatoms, a transthylakoid proton gradient alone is not sufficient to induce a non-photochemical fluorescence quenching. FEBS Lett 523:163–166CrossRefPubMedGoogle Scholar
  34. Lepetit B, Volke D, Gilbert M, Wilhelm C, Goss R (2010) Evidence for the existence of one antenna-associated, lipid-dissolved and two protein-bound pools of diadinoxanthin cycle pigments in diatoms. Plant Physiol 154:1905–1920CrossRefPubMedPubMedCentralGoogle Scholar
  35. Li XP, Gilmore AM, Caffarri S, Bassi R, Golan T, Kramer D, Nyoigi KK (2004) Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein. J Biol Chem 279:22866–22874CrossRefPubMedGoogle Scholar
  36. Litvín R, Bína D, Herbstová M, Gardian Z (2016) Architecture of the light harvesting apparatus of the eustigmatophyte alga Nannochloropsis oceanica. Photosynth Res. doi:10.1007/s11120-016-0234-1 Google Scholar
  37. Lubián LM, Montero O (1998) Excess light-induced violaxanthin cycle activity in Nannochloropsis gaditana (Eustigmatophyceae): effects of exposure time and temperature. Phycologia 37:16–23CrossRefGoogle Scholar
  38. Müller P, Li X-P, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566CrossRefPubMedPubMedCentralGoogle Scholar
  39. Nilkens M, Eugen Kress E, Lambrev P, Miloslavina Y, Müller M, Holzwarth AR, Jahns P (2010) Identification of a slowly inducible zeaxanthin-dependent component of non-photochemical quenching of chlorophyll fluorescence generated under steady-state conditions in Arabidopsis. Biochim Biophys Acta 1797:466–475CrossRefPubMedGoogle Scholar
  40. Ocampo-Alvarez H, García-Mendoza E, Govindjee (2013) Antagonist effect between violaxanthin and de-epoxidated pigments in nonphotochemical quenching induction in the qE deficient brown alga Macrocystis pyrifera. Biochim Biophys Acta 1827:427–437CrossRefPubMedGoogle Scholar
  41. Owens TG, Gallagher JC, Alberte RS (1987) Photosynthetic light harvesting function of violaxanthin in Nannochloropsis spp. (Eustigmatophyceae). J Phycol 23:79–85CrossRefGoogle Scholar
  42. Pan H, Šlapeta J, Carter D, Chen M (2012) Phylogenetic analysis of the light-harvesting system in Chromera velia. Photosynth Res 111:19–28CrossRefPubMedGoogle Scholar
  43. Reynolds JM, Bruns BU, Fitt WK, Schmidt GW (2008) Enhanced photoprotection pathways in symbiotic dinoflagellates of shallow-water corals and other cnidarians. Proc Natl Acad Sci USA 105:13674–13678CrossRefPubMedPubMedCentralGoogle Scholar
  44. Roháček K, Bertrand M, Moreau B, Jacquette B, Caplat C, Morant-Manceau A, Schoefs B (2014) Relaxation of the non-photochemical chlorophyll fluorescence quenching in diatoms: kinetics, components and mechanisms. Phil Trans R Soc B 369:20130241CrossRefPubMedPubMedCentralGoogle Scholar
  45. Simionato D, Sforza E, Carpinelli EC, Bertucco A, Giacometti GM, Morosinotto T (2011) Acclimation of Nannochloropsis gaditana to different illumination regimes: effects on lipids accumulation. Bioresour Technol 102:6026–6032CrossRefPubMedGoogle Scholar
  46. Stransky H, Hager A (1970) The carotenoid pattern and the occurrence of the light-induced xanthophyll cycle in various classes of algae. II. Xanthophyceae. Arch Microbiol 71:164–190Google Scholar
  47. Ting CS, Owens TG (1994) The effects of excess irradiance on photosynthesis in the marine diatom Phaeodactylum tricornutum. Plant Physiol 106:763–770CrossRefPubMedPubMedCentralGoogle Scholar
  48. Tsuyama M, Shibata M, Kawazu T, Kobayashi Y (2004) An analysis of the mechanism of the low-wave phenomenon of chlorophyll fluorescence. Photosynth Res 81:67–76CrossRefPubMedGoogle Scholar
  49. Xyländer M, Hagen C (2002) ‘Low-waves’ in chlorophyll fluorescence kinetics indicate deprivation of bicarbonate. Photosynth Res 72:255–262CrossRefPubMedGoogle Scholar
  50. Zapata M, Garrido JL, Jeffrey SW (2006) Chlorophyll c pigments: current status. In: Grimm B, Porra RJ, Rüdiger W, Scheer H (eds) Chlorophylls and Bacteriochlorophylls: biochemistry, biophysics, functions and applications. Kluwer, Dordrecht, pp 39–53CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Institute of Plant Molecular BiologyBiology Centre CASČeské BudějoviceCzech Republic
  2. 2.Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic

Personalised recommendations