Photosynthesis Research

, Volume 129, Issue 2, pp 109–127 | Cite as

Gernot Renger (1937–2013): his life, Max-Volmer Laboratory, and photosynthesis research

History and Biography
  • 284 Downloads

Abstract

Gernot Renger (October 23, 1937–January 12, 2013), one of the leading biophysicists in the field of photosynthesis research, studied and worked at the Max-Volmer-Institute (MVI) of the Technische Universität Berlin, Germany, for more than 50 years, and thus witnessed the rise and decline of photosynthesis research at this institute, which at its prime was one of the leading centers in this field. We present a tribute to Gernot Renger’s work and life in the context of the history of photosynthesis research of that period, with special focus on the MVI. Gernot will be remembered for his thought-provoking questions and his boundless enthusiasm for science.

Keywords

Max-Volmer-Institute Horst T. Witt Photosystem II Oxygen evolving complex Water oxidizing complex (WOC) ADRY agent Mechanism of water splitting 

Abbreviations

ADRY

Acceleration of the deactivation reactions of the water splitting system Y

BBY

PS II  membrane fragments prepared according to the protocol developed by Berthold, Babcock and Yocum

CCCP

Carbonyl cyanide m-chlorophenyl hydrazone

Chl a

Chlorophyll a

Chl-aII

Primary electron donor Chl of PSII (= P680)

CP43, CP47

Inner chlorophyll-binding antenna proteins of PSII with molecular masses of 43 and 47 kDa, repectively

D1, D2

Reaction center proteins of PSII

DCMU

Diuron = 3-(3′-4′-dichlorophenyl)-1,1-dimethylurea

FU Berlin

Freie Universität Berlin

GDR

German Democratic Republic

HU Berlin

Humboldt Universität Berlin

LHC

Light harvesting complex

MVI

Max-Volmer-Institute

OEC

Oxygen-evolving complex

P680

Primary electron donor of PSII (= Chl aII)

P700

Primary electron donor of photosystem I

PBP

Phycobiliprotein

Pheo

Pheophytin (primary electron acceptor of PSII)

PQ

Plastoquinone

PSII

Photosystem II

QA, QB

Primary and secondary plastoquinone molecules in PSII

ROS

Reactive oxygen species

Sfb

Sonderforschungsbereich (CRC, collaborative research center)

Si

Oxidation states of the oxygen-evolving complex of PSII (i = 0, 1, 2, 3, 4)

SOD

Superoxide dismutase

TU Berlin

Technische Universität Berlin

WOC

Water-oxidizing complex, equivalent of OEC

WSCP

Water-soluable chlorophyll-binding protein

WWII

World War II

X320

An intermediate with an absorption change at 320 nm; an early expression for QA

YD

Tyrosine D of the D2 protein that can reduce the S2 and S3 states of PSII

YZ

Tyrosine Z of the D1 protein of PSII that acts as primary electron donor to P680+

References

  1. Ananyev G, Wydrzynski T, Renger G, Klimov V (1992) Transient peroxide formation by the manganese-containing redox-active donor side of Photosystem II upon inhibition of O2 evolution with laurylcholine chloride. Biochim Biophys Acta 1100:303–311CrossRefGoogle Scholar
  2. Babcock GT, Blankenship RE, Sauer K (1976) Reaction kinetics for positive charge accumulation on the water side of chloroplast photosystem II. FEBS Lett 61:286–289PubMedCrossRefGoogle Scholar
  3. Belyaeva NE, Schmitt FJ, Paschenko VZ, Riznichenko GY, Rubin AB, Renger G (2011) PS II model based analysis of transient fluorescence yield measured on whole leaves of Arabidopsis thaliana after excitation with light flashes of different energies. Biosystems 103:188–195PubMedCrossRefGoogle Scholar
  4. Belyaeva NE, Schmitt FJ, Paschenko VZ, Riznichenko GY, Rubin AB, Renger G (2014) Model based analysis of transient fluorescence yield induced by actinic laser flashes in spinach leaves and cells of green alga Chlorella pyrenoidosa Chick. Plant Physiol Biochem 77:49–59PubMedCrossRefGoogle Scholar
  5. Berthold DA, Babcock GT, Yocum CF (1981) A highly resolved, oxygen-evolving photosystem II preparation from spinach thylakoid membranes. FEBS Lett 134:231–234CrossRefGoogle Scholar
  6. Bouges-Bocquet B (1973) Electron transfer between the two photosystems in spinach chloroplasts. Biochim Biophys Acta 314:250–256PubMedCrossRefGoogle Scholar
  7. Capone M, Narzi D, Bovi D, Guidoni L (2016) Mechanism of water delivery to the active site of photosystem II along the S2 to S3 transition. J Phys Chem Lett 7:592–596PubMedCrossRefGoogle Scholar
  8. Christen G, Seeliger A, Renger G (1999) P680•+ reduction kinetics and redox transition probability of the water oxidizing complex as a function of pH and H/D isotope exchange in spinach thylakoids. Biochemistry 38:6082–6092PubMedCrossRefGoogle Scholar
  9. Clark LC, Wolf R, Granger D, Taylor Z (1953) Continuous recording of blood oxygen tensions by polarography. J Appl Physiol 6:189–193PubMedGoogle Scholar
  10. Cox N, Messinger J (2013) Reflections on substrate water and dioxygen formation. Biochim Biophys Acta 1827:1020–1030PubMedCrossRefGoogle Scholar
  11. Dau H, Haumann M (2008) The manganese complex of photosystem II in its reaction cycle—basic framework and possible realization at the atomic level. Coord Chem Rev 252:273–295CrossRefGoogle Scholar
  12. Debus RJ (2015) FTIR studies of metal ligands, networks of hydrogen bonds, and water molecules near the active site Mn4CaO5 cluster in Photosystem II. Biochim Biophys Acta 1847:19–34PubMedCrossRefGoogle Scholar
  13. Debus RJ, Barry BA, Babcock GT, Mcintosh L (1988) Site-directed mutagenesis identifies a tyrosine radical involved in the photosynthetic oxygen-evolving system. Proc Natl Acad Sci USA 85:427–430PubMedPubMedCentralCrossRefGoogle Scholar
  14. Deisenhofer J, Epp O, Miki K, Huber R, Michel H (1985) Structure of the protein subunits in the photosynthetic reaction center of Rhodopseudomonas viridis at 3 Å resolution. Nature 318:618–624PubMedCrossRefGoogle Scholar
  15. Demmig-Adams B, Garab G, Adams WW III, Govindjee (Eds) (2014) Non-photochemical quenching and energy dissipation in plants, algae and cyanobacteria. Advances in Photosynthesis and Respiration, vol. 40, Springer, DordrechtGoogle Scholar
  16. Döring G, Stiehl HH, Witt HT (1967) A 2nd chlorophyll reaction in electron chain of photosynthesis—registration by repetitive excitation technique. Z Naturforsch 22b:639-644Google Scholar
  17. Döring G, Renger G, Vater J, Witt HT (1969) Properties of photoactive chlorophyll-a-II in photosynthesis. Z Naturforsch 24b:1139-1143Google Scholar
  18. Eckert H-J (1982) Blitzlichtspektroskopische Untersuchungen des Elektronentransportes im System II der Photosynthese. Technische Universität Berlin, ThesisGoogle Scholar
  19. Eckert H-J, Renger G (1988) Temperature dependence of P680+ reduction in O2 evolving PSII membrane fragments at different redox states Si of the water oxidizing system. FEBS Lett 236:425–431CrossRefGoogle Scholar
  20. Eckert HJ, Renger G, Witt HT (1984) Reduction kinetics of the photo-oxidized chlorophyll aII+ in the nanosecond range—measurements of the absorption changes at 688 nm under repetitive flash excitation. FEBS Lett 167:316–320CrossRefGoogle Scholar
  21. Eckert HJ, Renger G, Bernarding J, Faust P, Eichler HJ, Salk J (1987) Examination of fluorescence lifetime and radical-pair decay in photosystem II membrane-fragments from spinach. Biochim Biophys Acta 893:208–218CrossRefGoogle Scholar
  22. Eckert HJ, Geiken B, Bernarding J, Napiwotzki A, Eichler HJ, Renger G (1991) 2 Sites of photoinhibition of the electron-transfer in oxygen evolving and Tris-treated PS II membrane-fragments from spinach. Photosynth Res 27:97–108PubMedCrossRefGoogle Scholar
  23. Förster V, Junge W (1985) Stoichiometry and kinetics of proton release upon photosynthetic water oxidation. Photochem Photobiol 41:183–190CrossRefGoogle Scholar
  24. Fowler CF (1977) Proton evolution from photosystem II stoichiometry and mechanistic considerationsm. Biochim Biophys Acta 462:414–421PubMedCrossRefGoogle Scholar
  25. Funk C, Schröder WP, Napiwotzki A, Tjus SE, Renger G, Andersson B (1995) The PSII-S protein of higher-plants—a new-type of pigment-binding protein. Biochemistry 34:11133–11141PubMedCrossRefGoogle Scholar
  26. Gleiter HM, Haag E, Shen J-R, Eaton-Rye JJ, Seeliger AG, Inoue Y, Vermaas WFJ, Renger G (1995) Involvement of the CP47 protein in stabilization and photoactivation of a functional water oxidizing complex in the cyanobacterium Synechocystis sp PCC 6803. Biochemistry 34:6847–6856PubMedCrossRefGoogle Scholar
  27. Govindjee (2008) Recollections of Thomas John Wydrzynski. Photosynth Res 98:13–31PubMedCrossRefGoogle Scholar
  28. Govindjee (2010) Book review. In: Renger G (ed) Primary processes of photosynthesis: principles and apparatus, parts 1 and 2. The Royal Society of Chemistry (RSC) 2008. Photosynth Res 103:61–63Google Scholar
  29. Govindjee, Björn LO (2012) Dissecting oxygenic photosynthesis: the evolution of the “Z”-scheme for Thylakoid reactions. In: Itoh S, Mohanty P, Guruprasad KN (eds) Photosynthesis: basics and applications. I.K. Publishers, New Delhi, pp 1–27Google Scholar
  30. Govindjee, Renger G (1993) In appreciation of Bessel Kok. Photosynth Res 38(3):211–213CrossRefGoogle Scholar
  31. Govindjee, Döring G, Govindjee R (1970) The active chlorophyll aII in suspensions of lyophilized and Tris-washed chloroplasts. Biochim Biophys Acta 205:303–306PubMedCrossRefGoogle Scholar
  32. Grätzel M (1981) Artificial photosynthesis—water cleavage into hydrogen and oxygen by visible-light. Acc Chem Res 14:376–384CrossRefGoogle Scholar
  33. Haag E, Irrgang KD, Boekema EJ, Renger G (1990) Functional and structural analysis of photosystem II core complexes from spinach with high oygen evolution capacity. Eur J Biochem 189:47–53PubMedCrossRefGoogle Scholar
  34. Haumann M, Müller C, Liebisch P, Iuzzolino L, Dittmer J, Grabolle M, Neisius T, Meyer-Klaucke W, Dau H (2005) Structural and oxidation state changes of the photosystem II manganese complex in four transitions of the water oxidation cycle (S0 → S1, S1 → S2, S2 → S3, and S3, S4 → S0) characterized by X-ray absorption spectroscopy at 20 K and room temperature. Biochemistry 44:1894–1908PubMedCrossRefGoogle Scholar
  35. Havemann J, Mathis P (1976) Flash-induced absorption changes of the primary donor of photosystem II at 830 nm in chloroplasts inhibited by low pH or Tris-treatment. Biochim Biophys Acta 440:346–355CrossRefGoogle Scholar
  36. Horigome D, Satoh H, Itoh N, Mitsunaga K, Oonishi I, Nakagawa A, Uchida A (2007) Structural mechanism and photoprotective function of water-soluble chlorophyll-binding protein. J Biol Chem 282:6525–6531PubMedCrossRefGoogle Scholar
  37. Inoue Y, Crofts AR, Govindjee, Murata N, Renger G, Satoh K (eds) (1983) The oxygen evolving system of photosynthesis. Academic Press, Tokyo and San DiegoGoogle Scholar
  38. Irrgang KD, Boekema EJ, Vater J, Renger G (1988) Structural determination of the photosystem II core complex from spinach. Eur J Biochem 178:209–217PubMedCrossRefGoogle Scholar
  39. Joliot P, Barbieri G, Chabaud R (1969) Un nouveau modele des centres photochimiques du systeme II. Photochem Photobiol 10:309–329CrossRefGoogle Scholar
  40. Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 angstrom resolution. Nature 411:909–917PubMedCrossRefGoogle Scholar
  41. Junge W (2004) Protons, proteins and ATP. Photosynth Res 80:198–221CrossRefGoogle Scholar
  42. Junge W (2005) Protons, proteins and ATP. In: Govindjee, Beatty JT, Gast H, Allen JF (eds) Discoveries of photosynthesis. Springer, Berlin, pp 571–595Google Scholar
  43. Junge W, Rutherford AW (2007) Horst Tobias Witt (1922-2007)—Obituary. Nature 448:425–425PubMedCrossRefGoogle Scholar
  44. Junge W, Witt HT (1968) On ion transport system of photosynthesis—investigations on a molecular level. Z Naturforsch 23b:244–254Google Scholar
  45. Karge M, Irrgang K-D, Renger G (1997) Analysis of the reaction coordinate of photosynthetic water oxidation by kinetic measurements of 355 nm absorption changes at different temperatures in photosystem II preparations suspended in either H2O or D2O. Biochemistry 36:8904–8913PubMedCrossRefGoogle Scholar
  46. Klimov VV, Klevanik AV, Shuvalov VA, Krasnovsky AA (1977) Reduction of pheophytin in primary light reaction of photosystem 2. FEBS Lett 82:183–186PubMedCrossRefGoogle Scholar
  47. Klimov VV, Ananyev G, Zastryzhnaya O, Wydrzynski T, Renger G (1993) Photoproduction of hydrogen-peroxide in photosystem II membrane-fragments—a comparison of 4 signals. Photosynth Res 38:409–416PubMedCrossRefGoogle Scholar
  48. Koike H, Hanssum B, Inoue Y, Renger G (1987) Temperature dependence of the S-state transitions in a thermophilic cyanobacterium, Synechococcus vulcanus Copeland measured by absorption changes in the ultraviolet region. Biochim Biophys Acta 893:524–533CrossRefGoogle Scholar
  49. Kok B, Forbush B, McGloin M (1970) Cooperation of charges in photosynthetic O2 evolution. Photochem Photobiol 11:457–476PubMedCrossRefGoogle Scholar
  50. Krewald V, Retegan M, Cox N, Messinger J, Lubitz W, DeBeer S, Neese F, Pantazis DA (2015) Metal oxidation states in biological water splitting. Chem Sci 6:1676–1695CrossRefGoogle Scholar
  51. Krey A, Govindjee (1964) Fluorescence changes in porphyridium exposed to green light of different intensity—a new emission band at 693 mm and its significance to photosynthesis. Proc Natl Acad Sci USA 52:1568–1572PubMedPubMedCentralCrossRefGoogle Scholar
  52. Kurreck J, Seeliger AG, Reifarth F, Karge M, Renger G (1995) Reconstitution of the endogenous plastoquinone pool in photosystem II (PS II) membrane-fragments, inside-out-vesicles, and PS II core complexes from spinach. Biochemistry 34:15721–15731PubMedCrossRefGoogle Scholar
  53. Lambrev PH, Schmitt FJ, Kussin S, Schoengen M, Varkonyi Z, Eichler HJ, Garab G, Renger G (2011) Functional domain size in aggregates of light-harvesting complex II and thylakoid membranes. Biochim Biophys Acta 1807:1022–1031PubMedCrossRefGoogle Scholar
  54. Lavergne J, Trissl HW (1995) Theory of fluorescence induction in photosystem II: derivation of analytical expressions in a model including exciton-radical-pair equilibrium and restricted energy transfer between photosynthetic units. Biophys J 68:2474–2492PubMedPubMedCentralCrossRefGoogle Scholar
  55. Liu B, Napiwotzki A, Eckert HJ, Eichler HJ, Renger G (1993) Studies on the recombination kinetics of the radical pair P680+Pheo in isolated PS II core complexes from spinach. Biochim Biophys Acta 1142:129–138CrossRefGoogle Scholar
  56. Mamedov M, Govindjee Nadtochenko V, Semenov A (2015) Primary electron transfer processes in photosynthetic reaction centers from oxygenic organisms. Photosynth Res 125:51–63PubMedCrossRefGoogle Scholar
  57. Messinger J, Renger G (1990) The reactivity of hydrazine with PS II strongly depends on the redox state of the water oxidizing system. FEBS Lett 277:141–146PubMedCrossRefGoogle Scholar
  58. Messinger J, Renger G (1994) Analysis of pH-induced modifications of the period four oscillation of the flash induced oxygen evolution reveal distinct structural changes of the photosystem II donor side at characteristic pH values. Biochemistry 33:10896–10905PubMedCrossRefGoogle Scholar
  59. Messinger J, Renger G (2008) Photosynthetic water-splitting. In: Renger G (ed) Primary processes of photosynthesis—Part 2: basic principles and apparatus comprehensive series in photochemical and photobiological sciences. The Royal Society of Chemistry, Cambridge, UK, pp 291–349Google Scholar
  60. Messinger J, Wacker U, Renger G (1991) Unusual low reactivity of the water oxidase in the redox state S3 toward exogenous reductants. Analysis of the NH2OH and NH2NH2 induced modifications of flash induced oxygen evolution in isolated spinach thylakoids. Biochemistry 30:7852–7862PubMedCrossRefGoogle Scholar
  61. Messinger J, Schröder WP, Renger G (1993) Structure-function relations in photosystem II. Effects of temperature and chaotropic agents on the period four oscillation of flash induced oxygen evolution. Biochemistry 32:7658–7668PubMedCrossRefGoogle Scholar
  62. Messinger J, Seaton G, Wydrzynski T, Wacker U, Renger G (1997) S-3 state of the water oxidase in photosystem II. Biochemistry 36:6862–6873PubMedCrossRefGoogle Scholar
  63. Messinger J, Robblee JH, Bergmann U, Fernandez C, Glatzel P, Visser H, Cinco RM, McFarlane KL, Bellachio E, Pizarro SA, Cramer SP, Sauer K, Klein MP, Yachandra VK (2001) Absence of Mn centered oxidation in the S2 to S3 transition: implications for the mechanism of photosynthetic water oxidation. J Am Chem Soc 123:7804–7820PubMedPubMedCentralCrossRefGoogle Scholar
  64. Michel H (1982) 3-Dimensional crystals of a membrane-protein complex—the photosynthetic reaction center from Rhodopseudomonas viridis. J Mol Biol 158:567–572PubMedCrossRefGoogle Scholar
  65. Michel H, Deisenhofer J (1988) relevance of the photosynthetic reaction center from purple bacteria to the structure of photosystem II. Biochemistry 27:1–7CrossRefGoogle Scholar
  66. Nilsson H, Krupnik T, Kargul J, Messinger J (2014) Substrate water exchange in photosystem II core complexes of the extremophilic red alga Cyanidioschyzon merolae. Biochim Biophys Acta 1837:1257–1262PubMedCrossRefGoogle Scholar
  67. Noguchi T (2008) Fourier transform infrared analysis of the photosynthetic oxygen-evolving center. Coord Chem Rev 252:336–346CrossRefGoogle Scholar
  68. Pieper J, Renger G (2009a) Flash-induced structural dynamics in photosystem II membrane fragments of green plants. Biochemistry 48:6111–6115PubMedCrossRefGoogle Scholar
  69. Pieper J, Renger G (2009b) Protein dynamics investigated by neutron scattering. Photosynth Res 102:281–293PubMedCrossRefGoogle Scholar
  70. Pieper J, Hauss T, Buchsteiner A, Baczynski K, Adamiak K, Lechner RE, Renger G (2007) Temperature- and hydration-dependent protein dynamics in photosystem II of green plants studied by quasielastic neutron scattering. Biochemistry 46:11398–11409PubMedCrossRefGoogle Scholar
  71. Pieper J, Trapp M, Skomorokhov A, Natkaniec I, Peters J, Renger G (2012) Temperature-dependent vibrational and conformational dynamics of photosystem II membrane fragments from spinach investigated by elastic and inelastic neutron scattering. Biochim Biophys Acta 1817:1213–1219PubMedCrossRefGoogle Scholar
  72. Rabinowitch EI, Govindjee (1965) Role of chlorophyll in photosynthesis. Sci Am 213:74–83PubMedCrossRefGoogle Scholar
  73. Reed DW, Clayton RK (1968) Isolation of a recation center fraction from Rhodopseudomonas spheroides. Biochem Biophys Res Commun 30:471–475PubMedCrossRefGoogle Scholar
  74. Renger G (1969) Untersuchungen über das System der Wasserspaltung in der Photosynthese. PhD Thesis, Technische Universität, BerlinGoogle Scholar
  75. Renger G (1970) The watersplitting system of photosynthesis, I. A postulated model. Z Naturforsch 25b:966–971Google Scholar
  76. Renger G (1972a) The action of 2-Anilinothiophenes as accelerators of the deactivation reactions in the water splitting enzyme system of photosynthesis. Biochim Biophys Acta 256:428–439PubMedCrossRefGoogle Scholar
  77. Renger G (1972b) Studies on the mechanism of the water oxidation in photosynthesis. Eur J Biochem 27:259–269PubMedCrossRefGoogle Scholar
  78. Renger G (1973) Studies on the mechanism of destabilization of positive charges trapped in photosynthetic water-splitting enzyme system Y by a deactivation-accelerating agent. Biochim Biophys Acta 314:390–402PubMedCrossRefGoogle Scholar
  79. Renger G (1977a) The use of trypsin as a structurally selective modifier of the thylakoid membrane. In: Packer L, Papageorgiou GC, Trebst A (eds) Bioenergetics of Membranes. Elsevier, Amsterdam, pp 339–350Google Scholar
  80. Renger G (1977b) Model for the molecular mechanism of photosynthetic oxygen evolution. FEBS Lett 81:223–228CrossRefGoogle Scholar
  81. Renger G (1979) A rapid vectorial back reaction at the reaction centers of photosystem II in Tris-washed chloroplasts induced by repetitive flash excitation. Biochim Biophys Acta 547:103–116PubMedCrossRefGoogle Scholar
  82. Renger G (1983) Photosynthesis. In: Hoppe W, Lohmann W, Markl H, Ziegler H (eds) Biophysics, 2nd edn. Springer, Berlin, pp 515–542Google Scholar
  83. Renger G (1987) Mechanistic aspects of photosynthetic water cleavage. Photosynthetica 21:203–224Google Scholar
  84. Renger G (1997) Mechanistic and structural aspects of photosynthetic water oxidation. Physiol Plantarum 100:828–841CrossRefGoogle Scholar
  85. Renger G (2001) Photosynthetic water oxidation to molecular oxygen: apparatus and mechanism. Biochim Biophys Acta 1503:210–228PubMedCrossRefGoogle Scholar
  86. Renger G (2003) Apparatus and mechanism of photosynthetic oxygen evolution: a personal perspective. Photosynth Res 76:269–288PubMedCrossRefGoogle Scholar
  87. Renger G (2008a) Horst Tobias Witt (March 1, 1922 - May 14, 2007). Photosynth Res 96:5–8CrossRefGoogle Scholar
  88. Renger G (ed) (2008b) Primary processes of photosynthesis. Principles and apparatus. Comprehensive series in photochemical and photobiological sciences. The Royal Society of Chemistry, CambridgeGoogle Scholar
  89. Renger G (2012) Mechanism of light induced water splitting in photosystem II of oxygen evolving photosynthetic organisms. Biochim Biophys Acta 1817:1164–1176PubMedCrossRefGoogle Scholar
  90. Renger G, Govindjee (1985) The mechanism of photosynthetic water oxidation. Photosynth Res 6:33–55CrossRefGoogle Scholar
  91. Renger G, Govindjee (1993) How plants and cyanobacteria make oxygen: 25 years of period four oscillations. Photosynth Res 38:211–468CrossRefGoogle Scholar
  92. Renger G, Hanssum B (1992) Studies on the reaction coordinates of the water oxidase in PSII membrane-fragments from spinach. FEBS Lett 299:28–32PubMedCrossRefGoogle Scholar
  93. Renger G, Renger T (2008) Photosystem II: The machinery of photosynthetic water splitting. Photosynth Res 98:53–80PubMedCrossRefGoogle Scholar
  94. Renger G, Weiss W (1986) Studies on the nature of the water-oxidizing enzyme. 3. Spectral characterization of the intermediary redox states in the water-oxidizing enzyme system Y. Biochim Biophys Acta 850:184–196CrossRefGoogle Scholar
  95. Renger G, Wydrzynski T (1991) The role of manganese in photosynthetic water oxidation. Biol Met 4:73–80CrossRefGoogle Scholar
  96. Renger G, Bouges-Bocquet B, Büchel KH (1973) Modification of the trapping properties within photosynthetic watersplitting enzyme-system Y. J Bioenerg 4:491–505PubMedCrossRefGoogle Scholar
  97. Renger G, Eckert H-J, Weiss W (1983) Studies on the mechanism of photosynthetic oxygen formation. In: Inoue Y, Crofts AR, Govindjee, Murata N, Renger G, Satoh K (eds) The oxygen evolving system in photosynthesis. Academic Press, Japan, pp 73–82Google Scholar
  98. Renger G, Eckert H-J, Hagemann R, Hanssum B, Koike H, Wacker U (1989a) New results on the mechanism of photosynthetic water oxidation. In: Singhal GS, Barber J, Dilley RA, Govindjee, Haselkorn R, Mohanty P (eds) Photosynthesis: molecular biology and bioenergetics. Narosa Publishing House, New Delhi, pp 357–371Google Scholar
  99. Renger G, Messinger J, Fromme R (1989b) Tribromotoluquinone induced modifications of the oscillation pattern of oxygen evolution and of herbicide binding in thylakoids and PS II membrane-fragments from spinach. Z Naturforsch 44:423–430Google Scholar
  100. Renger G, Völker M, Eckert HJ, Fromme R, Hohm-Veit S, Gräber P (1989c) On the mechanism of photosystem II deterioration by UV-B irradiation. Photochem Photobiol 49:97–105CrossRefGoogle Scholar
  101. Renger G, Eckert HJ, Bergmann A, Bernarding J, Liu B, Napiwotzki A, Reifarth F, Eichler HJ (1995) Fluorescence and spectroscopic studies of exciton trapping and electron-transfer in photosystem II of higher plants. Aust J Plant Physiol 22:167–181CrossRefGoogle Scholar
  102. Renger G, Christen G, Karge M, Eckert H-J, Irrgang K-D (1998) Application of the Marcus theory for analysis of the temperature dependence of the reactions leading to photosynthetic water oxidation: results and implications. J Biol Inorg Chem 3:360–366CrossRefGoogle Scholar
  103. Renger G, Sopory SK, Singhal GS, Irrgang K-D, Govindjee (1999) Introduction to photobiology, photosynthesis and photomorphogenesis. In: Concepts in photobiology and photomorphogenesis. pp 1–7. Narosa Publishers/KluwerAcademic Publishers (now Springer)Google Scholar
  104. Renger T, Trostrnann I, Theiss C, Madjet ME, Richter M, Paulsen H, Eichler HJ, Knorr A, Renger G (2007) Refinement of a structural model of a pigment-protein complex by accurate optical line shape theory and experiments. J Phys Chem B 111:10487–10501PubMedCrossRefGoogle Scholar
  105. Retegan M, Krewald V, Mamedov F, Neese F, Lubitz W, Cox N, Pantazis DA (2016) A five-coordinate Mn(IV) intermediate in biological water oxidation: spectroscopic signature and a pivot mechanism for water binding. Chem Sci 7:72–84CrossRefGoogle Scholar
  106. Rumberg B, Siggel U (1968) Quantitative connections between chlorophyll-b reaction electron transport and phosphorylation in photosynthesis. Z Naturforsch 23:239–244CrossRefGoogle Scholar
  107. Schatz GH, Witt HT (1984) Extraction and characterisation of oxygen-evolving photosystem II complexes from a thermophilic cyanobacterium Synechococcus spec. Photobioch Photobiop 7:1–14Google Scholar
  108. Schmitt FJ, Theiss C, Wache K, Fuesers J, Andree S, Handojo A, Karradt A, Kiekebusch D, Eichler HJ, Eckert H-J (2006) Investigation of the excited states dynamics in the Chl d- containing cyanobacterium Acaryochloris marina by time- and wavelength correlated single-photon counting. Proc SPIE 6386:638607. doi:10.1117/12.689127 CrossRefGoogle Scholar
  109. Schmitt FJ, Trostmann I, Theiss C, Pieper J, Renger T, Fuesers J, Hubrich EH, Paulsen H, Eichler HJ, Renger G (2008) Excited state dynamics in recombinant water-soluble chlorophyll proteins (WSCP) from cauliflower investigated by transient fluorescence spectroscopy. J Phys Chem B 112:13951–13961PubMedCrossRefGoogle Scholar
  110. Schmitt FJ, Maksimov EG, Suedmeyer H, Jeyasangar V, Theiss C, Paschenko VZ, Eichler HJ, Renger G (2011) Time resolved temperature switchable excitation energy transfer processes between CdSe/ZnS nanocrystals and phycobiliprotein antenna from Acaryochloris marina. Photonic Nanostruct 9:190–195CrossRefGoogle Scholar
  111. Schmitt FJ, Maksimov EG, Hatti P, Weissenborn J, Jeyasangar V, Razjivin AP, Paschenko VZ, Friedrich T, Renger G (2012) Coupling of different isolated photosynthetic light harvesting complexes and CdSe/ZnS nanocrystals via Förster resonance energy transfer. Biochim Biophys Acta 1817:1461–1470PubMedCrossRefGoogle Scholar
  112. Schmitt FJ, Renger G, Friedrich T, Kreslavski VD, Zharmukhamedov SK, Los DA, Kuznetsov VV, Allakhverdiev SI (2014) Reactive oxygen species: re-evaluation of generation, monitoring and role in stress-signaling in phototrophic organisms. Biochim Biophys Acta 1837:835–848PubMedCrossRefGoogle Scholar
  113. Seeliger AG, Kurreck J, Renger G (1997) Kinetics of S2 and S3 reduction by tyrosine YD and other endogenous donors as a function of temperature in spinach PS II membrane fragments with a reconstituted plastoquinone pool. Biochemistry 36:2459–2464PubMedCrossRefGoogle Scholar
  114. Siegbahn PEM (2009) Structures and energetics for O2 formation in photosystem II. Acc Chem Res 42:1871–1880PubMedCrossRefGoogle Scholar
  115. Siegbahn PEM (2013) Substrate water exchange for the oxygen evolving complex in PSII in the S1, S2, and S3 states. J Am Chem Soc 135:9442–9449PubMedCrossRefGoogle Scholar
  116. Siggel U, Khanna R, Renger G, Govindjee (1977) Investigation of the absorption changes of plastoquinone system in broken chloroplasts. The effect of bicarbonate-depletion. Biochim Biophys Acta 462:196–207PubMedCrossRefGoogle Scholar
  117. Stiehl HH, Witt HT (1969) Quantitative treatment of the function of plastoquinone in photosynthesis. Z Naturforsch 24b:1588–1598Google Scholar
  118. Styring S, Rutherford AW (1988) Deactivation kinetics and temperature dependence of the S-state transitions in the oxygen evolving system of photosystem II measured by EPR spectroscopy. Biochim Biophys Acta 933:378–387CrossRefGoogle Scholar
  119. Suzuki H, Sugiura M, Noguchi T (2008) Monitoring water reactions during the S-state cycle of the photosynthetic water-oxidizing center: detection of the DOD bending vibrations by means of Fourier transform infrared spectroscopy. Biochemistry 47:11024–11030PubMedCrossRefGoogle Scholar
  120. Theiss C, Trostmann I, Andree S, Schmitt FJ, Renger T, Eichler HJ, Paulsen H, Renger G (2007) Pigment-pigment and pigment-protein interactions in recombinant water-soluble chlorophyll proteins (WSCP) from cauliflower. J Phys Chem B 111:13325–13335PubMedCrossRefGoogle Scholar
  121. Trebst A, Depka B (1985) The architecture of Phyotosystem II in plant photosynthesis. Which peptide subunits carry the reaction center of PS II? In: Michel-Beyerle ME (ed) Antennas and reaction centers in photosynthetic bacteria. Springer, Berlin, pp 216–224CrossRefGoogle Scholar
  122. Trinkunas G, Holzwarth AR (1994) Kinetic modeling of exciton migration in photosynthetic systems. 2. Simulations of excitation dynamics in two-dimensional photosystem I core antenna/reaction center complexes. Biophys J 66:415–429PubMedPubMedCentralCrossRefGoogle Scholar
  123. Ugur I, Rutherford AW, Kaila VRI (2016) Redox-coupled substrate water reorganization in the active site of photosystem II—the role of calcium in substrate water delivery. Biochim Biophys Acta. doi:10.1016/j.bbabio.2016.1001.1015 PubMedGoogle Scholar
  124. Umena Y, Kawakami K, Shen JR, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55–61PubMedCrossRefGoogle Scholar
  125. Vater J, Renger G, Stiehl HH, Witt HT (1968) Intermediates and kinetics in the water splitting part of photosynthesis. Naturwissenschaften 55:220–221PubMedGoogle Scholar
  126. Vermaas WFJ, Renger G, Dohnt G (1984a) The reduction of the oxygen evolving system in chloroplasts by thylakoid components. Biochim Biophys Acta 764:194–202CrossRefGoogle Scholar
  127. Vermaas WFJ, Renger G, Arntzen CJ (1984b) Herbicide quinone interactions in photosystem II. Z Naturforsch 39c:368–373Google Scholar
  128. Vermaas WFJ, Rutherford AW, Hansson Ö (1988) Site directed mutagenesis in photosystem II of the cyanobacterium Synechocystis sp. PCC 6803: donor D is a tyrosine residue in the D2 protein. Proc Natl Acad Sci USA 85:8477–8481CrossRefGoogle Scholar
  129. Vogt L, Vinyard DJ, Khan S, Brudvig GW (2015) Oxygen-evolving complex of photosystem II: an analysis of second-shell residues and hydrogen-bonding networks. Curr Opin Chem Biol 25:152–158PubMedCrossRefGoogle Scholar
  130. Wacker U (1993) Untersuchung der Kopplung von H+-Reaktionen und Elektronentransfervorgängen im Photosystem II Höherer Pflanzen. PhD Thesis, Technische Universität BerlinGoogle Scholar
  131. Weiss W, Renger G (1986) Studies on the nature of the water-oxidizing enzyme. 2. On the functional connection between the reaction-center complex and the water-oxidizing enzyme system Y in photosystem II. Biochim Biophys Acta 850:173–183CrossRefGoogle Scholar
  132. Witt HT (1967) On the analysis of photosynthesis by pulse techniques in 10−1 to 10−8 second range. In: Claeson S (ed) Fast Reactions, Primary Processes of Chemical Kinetics. Almquist and Wicksell, Stockholm, pp 261–310Google Scholar
  133. Witt HT (1979) Energy-conversion in the functional membrane of photosynthesis - analysis by light-pulse and electric pulse methods—central role of the electric-field. Biochim Biophys Acta 505:355–427PubMedCrossRefGoogle Scholar
  134. Witt HT, Rumberg B, Schmidtmann P, Siggel U, Skerra B, Vater J, Weikard J (1965) On the analysis of photosynthesis by flashlight techniques. Angew Chem Int Ed 4:799–819CrossRefGoogle Scholar
  135. Wydrzynski T, Ångström J, Baumgart F, Renger G, Vänngard T (1990) 35Cl-NMR linewidth measurements of aqueous suspensions of photosystem II membrane-fragments reveal only a simple hyperbolic dependence with chloride concentration. Biochim Biophys Acta 1018:55–60CrossRefGoogle Scholar
  136. Yachandra VK, DeRose VJ, Latimer MJ, Mukerji I, Sauer K, Klein MP (1993) Where plants make oxygen: a structural model for the photosynthetic oxygen evolving manganese cluster. Science 260:675–679PubMedCrossRefGoogle Scholar
  137. Yamashita T, Butler WL (1968) Photoreduction and photophosphorylation with Tris-washed chloroplasts. Plant Physiol 43:1978–1986PubMedPubMedCentralCrossRefGoogle Scholar
  138. Yano J, Kern J, Sauer K, Latimer MJ, Pushkar Y, Biesiadka J, Loll B, Saenger W, Messinger J, Zouni A, Yachandra VK (2006) Where water is oxidized to dioxygen: structure of the photosynthetic Mn4Ca cluster. Science 314:821–825PubMedPubMedCentralCrossRefGoogle Scholar
  139. Zouni A, Witt HT, Kern J, Fromme P, Krauß N, Saenger W, Orth P (2001) Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409:739–743PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Max-Volmer-LaboratoriumTU BerlinBerlinGermany
  2. 2.Departmant of ChemistryUmeå UniversityUmeåSweden

Personalised recommendations