Synechocystis mutants defective in manganese uptake regulatory system, ManSR, are hypersensitive to strong light


High affinity transport of manganese ions (Mn2+) in cyanobacteria is carried by an ABC-type transporter, encoded by the mntCAB operon, which is derepressed by the deficiency of Mn2+. Transcription of this operon is negatively regulated by the two-component system consisting of a sensory histidine kinase ManS and DNA-binding response regulator ManR. In this study, we examined two Synechocystis mutants, defective in ManS and ManR. These mutants were unable to grow on high concentrations of manganese. Furthermore, they were sensitive to high light intensity and unable to recover after short-term photoinhibition. Under standard illumination and Mn2+ concentration, mutant cells revealed the elevated levels of transcripts of genes involved in the formation of Photosystem II (psbA, psbD, psbC, pap-operon). This finding suggests that, in mutant cells, the PSII is sensitive to high concentrations of Mn2+ even at relatively low light intensity.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5



Histidine kinase


Response regulator


Open reading frame


Photosystem II


Reaction center


  1. Allakhverdiev SI, Murata N (2004) Environmental stress inhibits the synthesis de novo of proteins involved in the photodamage-repair cycle of photosystem II in Synechocystis sp. PCC 6803. Biochim Biophys Acta 1657:23–32. doi:10.1016/j.bbabio.2004.03.003

  2. Allakhverdiev SI, Sakamoto A, Nishiyama Y, Inaba M, Murata N (2000) Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiol 123:1047–1056. doi:10.1104/pp.123.3.1047

  3. Bartsevich VV, Pakrasi HB (1995) Molecular identification of an ABC transporter complex for manganese: analysis of a cyanobacterial mutant strain impaired in the photosynthetic oxygen evolution process. EMBO J 14:1845–1853 PMCID: PMC398283

  4. Bartsevich VV, Pakrasi HB (1996) Manganese transport in the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 271:26057–26061. doi:10.1074/jbc.271.42.26057

  5. Brandt AM, Raksajit W, Mulo P, Incharoensakdi A, Salminen TA, Mäenpää P (2009) Transcriptional regulation and structural modeling of the FutC subunit of an ABC-type iron transporter in Synechocystis sp. strain PCC 6803. Arch Microbiol 191:561–570. doi:10.1007/s00203-009-0482-y

  6. Davidson AL, Dassa E, Orelle C, Chen J (2008) Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 72:317–364. doi:10.1128/MMBR.00031-07

  7. Hernández-Prieto MA, Schön V, Georg J, Barreira L, Varela J, Hess WR, Futschik ME (2012) Iron deprivation in Synechocystis: inference of pathways, non-coding RNAs, and regulatory elements from comprehensive expression profiling. G3 2:1475–1495. doi:10.1534/g3.112.003863

  8. Hou X, Hou HJM (2013) Roles of manganese in photosystem II dynamics to irradiations and temperatures. Front Biol 8:312–322. doi:10.1007/s11515-012-1214-2

  9. Huang W, Wu Q (2004) The ManR specifically binds to the promoter of a Nramp transporter gene in Anabaena sp. PCC 7120: a novel regulatory DNA motif in cyanobacteria. Biochem Biophys Res Commun 317:578–585. doi:10.1016/j.bbrc.2004.03.089

  10. Jiang HB, Lou W-J, Ke W-T, Song W-Y, Price NM, Qiu B-S (2015) New insights into iron acquisition by cyanobacteria: an essential role for ExbB-ExbD complex in inorganic iron uptake. ISME J 9:297–309. doi:10.1038/ismej.2014.123

  11. Kanesaki Y, Shiwa Y, Tajima N, Suzuki M, Watanabe S, Sato N, Ikeuchi M, Yoshikawa H (2012) Identification of substrain-specific mutations by massively parallel whole-genome resequencing of Synechocystis sp. PCC 6803. DNA Res 19:67–79. doi:10.1093/dnares/dsr042

  12. Katoh H, Hagino N, Ogawa T (2001) Iron-binding activity of FutA1 subunit of an ABC-type iron transporter in the cyanobacterium Synechocystis sp. strain PCC 6803. Plant Cell Physiol 42:823–827. doi:10.1093/pcp/pce106

  13. Larson EJ, Pecoraro VL (1992) Introduction to manganese enzymes. In: Pecoraro VL (ed) Manganese redox enzymes. VCH Publishers Inc., New York, pp 1–28

  14. Madejczyk MS, Ballatori N (2012) The iron transporter ferroportin can also function as a manganese exporter. Biochim Biophys Acta 1818:651–657. doi:10.1016/j.bbamem.2011.12.002

  15. Mironov KS, Los DA (2015) RNA isolation from Synechocystis. Bio-protocol 5:e1428.

  16. Ogawa T, Bao DH, Katoh H, Shibata M, Pakrasi HB, Bhattacharyya-Pakrasi M (2002) A two-component signal transduction pathway regulates manganese homeostasis in Synechocystis 6803, a photosynthetic organism. J Biol Chem 277:28981–28986

  17. Pinto F, Pacheco CC, Ferreira D, Moradas-Ferreira P, Tamagnini P (2012) Selection of suitable reference genes for RT-qPCR analyses in cyanobacteria. PLoS One 7:e34983. doi:10.1371/journal.pone.0034983

  18. Rippka R (1988) Isolation and purification of cyanobacteria. Methods Enzymol 167:3–27. doi:10.1016/0076-6879(88)67004-2

  19. Salih GF, Jansson C (1997) Activation of the silent psbA1 gene in the cyanobacterium Synechocystis sp. strain 6803 produces a novel and functional D1 protein. Plant Cell 9:869–878. doi:10.1105/tpc.9.6.869

  20. Schreiber U, Neubauer C, Schliwa U (1993) PAM fluorometer based on medium frequency pulsed Xe-flash measuring light: a highly sensitive new tool in basic and applied photosynthesis research. Photosynth Res 36:65–72. doi:10.1007/BF00018076

  21. Sharon S, Salomon E, Kranzler C, Lis H, Lehmann R, Georg J, Zer H, Hess WR, Keren N (2014) The hierarchy of transition metal homeostasis: iron controls manganese accumulation in a unicellular cyanobacterium. Biochim Biophys Acta 1837:1990–1997. doi:10.1016/j.bbabio.2014.09.007

  22. Umeno Y, Kawakami K, Shen J-R, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9A. Nature 473:55–61. doi:10.1038/nature09913

  23. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:research0034.1. doi:10.1186/gb-2002-3-7-research0034

  24. Wegener KM, Welsh EA, Thornton LE, Keren N, Jacobs JM, Hixson KK, Monroe ME, Camp DG 2nd, Smith RD, Pakrasi HB (2008) High sensitivity proteomics assisted discovery of a novel operon involved in the assembly of photosystem II, a membrane protein complex. J Biol Chem 283:27829–27837. doi:10.1074/jbc.M803918200

  25. Yamaguchi K, Suzuki I, Yamamoto H, Lyukevich AA, Bodrova I, Los DA, Piven I, Zinchenko V, Kanehisa M, Murata N (2002) Two-component Mn2+-sensing system negatively regulates expression of the mntCAB operon in Synechocystis. Plant Cell 14:2901–2913. doi:10.1105/tpc.006262

  26. Zavřel T, Sinetova MA, Červený J (2015) Measurement of chlorophyll a and carotenoid concentration in cyanobacteria. Bio-protocol 5:e1467.

Download references


This work was supported by grants from Russian Science Foundation (no. 04-24-00020) to DAL and from Russian Foundation for Basic Research (13-04-01767) to VVZ.

Author information

Correspondence to Dmitry A. Los.

Additional information

Guest Editor: Suleyman Allakhverdiev.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zorina, A., Sinetova, M.A., Kupriyanova, E.V. et al. Synechocystis mutants defective in manganese uptake regulatory system, ManSR, are hypersensitive to strong light. Photosynth Res 130, 11–17 (2016).

Download citation


  • Synechocystis
  • Cyanobacteria
  • Ions
  • Manganese
  • Sensors
  • Stress
  • Transcription factor
  • Transporter